Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

New, Inexpensive Production Materials Boost Promise of Hydrogen Fuel

Published: Wednesday, February 26, 2014
Last Updated: Wednesday, February 26, 2014
Bookmark and Share
Combining cheap, oxide-based materials to split water into hydrogen and oxygen gases using solar energy, researchers achieved the highest reported for any oxide-based photoelectrode system.

Generating electricity is not the only way to turn sunlight into energy we can use on demand. The sun can also drive reactions to create chemical fuels, such as hydrogen, that can in turn power cars, trucks and trains.

The trouble with solar fuel production is the cost of producing the sun-capturing semiconductors and the catalysts to generate fuel. The most efficient materials are far too expensive to produce fuel at a price that can compete with gasoline.

"In order to make commercially viable devices for solar fuel production, the material and the processing costs should be reduced significantly while achieving a high solar-to-fuel conversion efficiency," says Kyoung-Shin Choi, a chemistry professor at the University of Wisconsin-Madison.

In a study published last week in the journal Science, Choi and postdoctoral researcher Tae Woo Kim combined cheap, oxide-based materials to split water into hydrogen and oxygen gases using solar energy with a solar-to-hydrogen conversion efficiency of 1.7 percent, the highest reported for any oxide-based photoelectrode system.

Choi created solar cells from bismuth vanadate using electrodeposition — the same process employed to make gold-plated jewelry or surface-coat car bodies — to boost the compound's surface area to a remarkable 32 square meters for each gram.

"Without fancy equipment, high temperature or high pressure, we made a nanoporous semiconductor of very tiny particles that have a high surface area," says Choi, whose work is supported by the National Science Foundation. "More surface area means more contact area with water, and, therefore, more efficient water splitting."

Bismuth vanadate needs a hand in speeding the reaction that produces fuel, and that's where the paired catalysts come in.

While there are many research groups working on the development of photoelectric semiconductors, and many working on the development of water-splitting catalysts, according to Choi, the semiconductor-catalyst junction gets relatively little attention.

"The problem is, in the end you have to put them together," she says. "Even if you have the best semiconductor in the world and the best catalyst in the world, their overall efficiency can be limited by the semiconductor-catalyst interface."

Choi and Kim exploited a pair of cheap and somewhat flawed catalysts — iron oxide and nickel oxide — by stacking them on the bismuth vanadate to take advantage of their relative strengths.

"Since no one catalyst can make a good interface with both the semiconductor and the water that is our reactant, we choose to split that work into two parts," Choi says. "The iron oxide makes a good junction with bismuth vanadate, and the nickel oxide makes a good catalytic interface with water. So we use them together."

The dual-layer catalyst design enabled simultaneous optimization of semiconductor-catalyst junction and catalyst-water junction.

"Combining this cheap catalyst duo with our nanoporous high surface area semiconductor electrode resulted in the construction of an inexpensive all oxide-based photoelectrode system with a record high efficiency," Choi says.

She expects the basic work done to prove the efficiency enhancement by nanoporous bismuth vanadate electrode and dual catalyst layers will provide labs around the world with fodder for leaps forward.

"Other researchers studying different types of semiconductors or different types of catalysts can start to use this approach to identify which combinations of materials can be even more efficient," says Choi, whose lab is already tweaking their design. "Which some engineering, the efficiency we achieved could be further improved very fast."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Developing Drug Resistance may be a Matter of Diversity for Tuberculosis
Researchers have probed the bacteria that causes tuberculosis, Mycobacterium tuberculosis, to learn more about how individual bacterial cells change and adapt while in the human body.
Tuesday, November 24, 2015
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Thursday, October 08, 2015
Flu Study, on Hold, Yields New Vaccine Technology
Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison.
Monday, September 07, 2015
Discovery in Growing Graphene Nanoribbons Could Enable Faster, More Efficient Electronics
Engineers have discovered a way to grow graphene nanoribbons with desirable semiconducting properties directly on a conventional germanium semiconductor wafer.
Wednesday, August 12, 2015
Cancer Discovery Links Experimental Vaccine and Biological Treatment
A new study at the University of Wisconsin-Madison has linked two seemingly unrelated cancer treatments that are both now being tested in clinical trials.
Tuesday, July 14, 2015
Iron: A Biological Element?
Study shows findings which have meaning for fields as diverse as mining and the search for life in space.
Friday, June 26, 2015
Software Differences can Skew Medical Scan Results
Differences in software can significantly skew results of medical scans commonly used in clinical care and research.
Tuesday, June 23, 2015
'Google Maps' for the Cancer Genome
A new approach for studying cancer allows researchers to study the full genetic picture as well as zoom in to see individual mutations in the DNA code.
Tuesday, June 09, 2015
Diabetes Drug Found In Freshwater Is Potential Source Of Intersex Fish
Study shows exposure to metforim causes physical changes in male fish.
Tuesday, April 28, 2015
Firming Up Origin of Cold-Adapted Yeasts that Make Cold Beer
An analysis of the yeast's genetic sequence revealed its closest affinity to one of two highly diverse Patagonian populations.
Saturday, April 12, 2014
New Induced Stem Cells May Unmask Cancer at Earliest Stage
A team of Wisconsin scientists observes the onset of the blood cancer leukemia by coaxing healthy and diseased human bone marrow to become embryonic-like stem cells.
Tuesday, February 08, 2011
Gene Regulating Human Brain Development Identified
New findings by Wisconsin-Madison scientists reveal the main genetic factor responsible for instructing cells at the earliest stages of embryonic development.
Friday, July 02, 2010
New Microbial Genetic System Dissects Biomass to Biofuel Conversion
DOE researchers develop a new tool to unlock the secrets of biomass degradation for development of cost-effective cellulosic biofuels.
Tuesday, June 15, 2010
Powerful Genome Barcoding System Reveals Large-Scale Variation in Human DNA
Variation on the order of thousands to hundreds of thousands of DNA's smallest pieces appeared 4,205 times in a comparison of DNA from just four people.
Tuesday, June 01, 2010
UW-Madison Biochemists Take a Bead on Gene-Controlling Code
Scientists are learning more about the role of a chemical code that governs the way that blueprint is read.
Friday, March 05, 2010
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Promising Drug Combination for Advanced Prostate Cancer
A new drug combination may be effective in treating men with metastatic prostate cancer. Preliminary results of this new approach are encouraging and have led to an ongoing international study being conducted in 196 hospitals worldwide.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Editing of LIMS Data Made Faster and More Efficient in Matrix Gemini
The latest version of the Matrix Gemini LIMS (Laboratory Information Management System) from Autoscribe Informatics now provides faster and more efficient editing of LIMS data by eliminating the need for a second editing screen.
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos