Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Generate New Neurons in Brains, Spinal Cords of Mammals

Published: Wednesday, February 26, 2014
Last Updated: Wednesday, February 26, 2014
Bookmark and Share
Researchers created new nerve cells without the need of stem cell transplants.

UT Southwestern Medical Center researchers created new nerve cells in the brains and spinal cords of living mammals without the need for stem cell transplants to replenish lost cells.

Although the research indicates it may someday be possible to regenerate neurons from the body’s own cells to repair traumatic brain injury or spinal cord damage or to treat conditions such as Alzheimer’s disease, the researchers stressed that it is too soon to know whether the neurons created in these initial studies resulted in any functional improvements, a goal for future research.

Spinal cord injuries can lead to an irreversible loss of neurons, and along with scarring, can ultimately lead to impaired motor and sensory functions. Scientists are hopeful that regenerating cells can be an avenue to repair damage, but adult spinal cords have limited ability to produce new neurons. Biomedical scientists have transplanted stem cells to replace neurons, but have faced other hurdles, underscoring the need for new methods of replenishing lost cells.

Scientists in UT Southwestern’s Department of Molecular Biology first successfully turned astrocytes - the most common non-neuronal brain cells - into neurons that formed networks in mice. They now successfully turned scar-forming astrocytes in the spinal cords of adult mice into neurons. The latest findings are published in Nature Communications and follow previous findings published in Nature Cell Biology.

“Our earlier work was the first to clearly show in vivo (in a living animal) that mature astrocytes can be reprogrammed to become functional neurons without the need of cell transplantation. The current study did something similar in the spine, turning scar-forming astrocytes into progenitor cells called neuroblasts that regenerated into neurons,” said Dr. Chun-Li Zhang, assistant professor of molecular biology at UT Southwestern and senior author of both studies.

“Astrocytes are abundant and widely distributed both in the brain and in the spinal cord. In response to injury, these cells proliferate and contribute to scar formation. Once a scar has formed, it seals the injured area and creates a mechanical and biochemical barrier to neural regeneration,” Dr. Zhang explained. “Our results indicate that the astrocytes may be ideal targets for in vivo reprogramming.”

The scientists’ two-step approach first introduces a biological substance that regulates the expression of genes, called a transcription factor, into areas of the brain or spinal cord where that factor is not highly expressed in adult mice. Of 12 transcription factors tested, only SOX2 switched fully differentiated, adult astrocytes to an earlier neuronal precursor, or neuroblast, stage of development, Dr. Zhang said.

In the second step, the researchers gave the mice a drug called valproic acid (VPA) that encouraged the survival of the neuroblasts and their maturation (differentiation) into neurons. VPA has been used to treat epilepsy for more than half a century and also is prescribed to treat bipolar disorder and to prevent migraine headaches, he said.

The current study reports neurogenesis (neuron creation) occurred in the spinal cords of both adult and aged (over one-year old) mice of both sexes, although the response was much weaker in the aged mice, Dr. Zhang said. Researchers now are searching for ways to boost the number and speed of neuron creation. Neuroblasts took four weeks to form and eight weeks to mature into neurons, slower than neurogenesis reported in lab dish experiments, so researchers plan to conduct experiments to determine if the slower pace helps the newly generated neurons properly integrate into their environment.

In the spinal cord study, SOX2-induced mature neurons created from reprogramming of astrocytes persisted for 210 days after the start of the experiment, the longest time the researchers examined, he added.

Because tumor growth is a concern when cells are reprogrammed to an earlier stage of development, the researchers followed the mice in the Nature Cell Biology study for nearly a year to look for signs of tumor formation and reported finding none.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
Friday, July 22, 2016
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Friday, July 22, 2016
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Friday, July 22, 2016
New Method Detects Telomere Length for Research into Cancer, Aging
UT Southwestern Medical Center cell biologists have identified a new method for determining the length of telomeres, the endcaps of chromosomes, which can influence cancer progression and aging.
Friday, July 01, 2016
3-D Atomic Structure of Cholesterol Transporter
Researchers at UTSW have determined the 3-D atomic structure of a human sterol transporter that helps maintain cholesterol balance.
Tuesday, May 31, 2016
New $17 Million Cryo-Electron Microscope Center Provides Extraordinary Views
Institute has announced opening of a new $17 million cryo-EM facility housing a unique collection of instruments that researchers can use to view 3-D images of objects.
Thursday, May 12, 2016
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
Friday, May 06, 2016
Enzyme Link Between Excessive Heart Muscle Growth, Cancer Growth
Researchers at UTSW have found that the drugs currently used to inhibit these enzymes in cancer may also be effective in treating enlargement of the heart muscle.
Saturday, April 16, 2016
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Friday, April 08, 2016
A Metabolic Twist that Drives Cancer Survival
A novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells has been identified.
Friday, April 08, 2016
Novel Metabolic Twist that Drives Cancer Survival
Researchers at CRI at UT Southwestern have identified a novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells.
Thursday, April 07, 2016
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
Thursday, March 31, 2016
Mutation That Causes Rare Disease
A mutation has been discovered that causes a rare systemic disorder known as XLPDR and confirmed a role for nucleic acids in immune function.
Tuesday, March 29, 2016
Promoting Liver Tissue Regeneration
Researchers at CRI have reported that inactivating a certain protein-coding gene promotes liver tissue regeneration in mammals.
Saturday, March 26, 2016
Lupus Study Shows Precision Medicine’s Potential to Define the Genetics of Autoimmune Disease
Researchers at UT Southwestern have used next-generation DNA sequencing technology to identify more than 1,000 gene variants that affect susceptibility to SLE.
Saturday, March 19, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Flu Vaccine May Reduce Risk of Death For Type 2 Diabetes Patients
Researchers at Imperial College London have suggested that the vaccine may have substantial benefits for patients with long-term conditions.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Porphyrins as Catalysts in Scalable Organic Reactions
This review covers the most relevant scalable porphyrin-catalysed procedures, showing how these compounds represent broad applications in chemistry.
CDC Updates Zika Recommendations
CDC has issued updated Zika recommendations and guidance for healthcare providers with a focus on sexual transmission.
Exploiting Malaria’s Achilles’ Heel
Researchers have uncovered an Achilles' heel in malaria's anti-drug treatment arsenal that could lead to a disease cure.
Genome of 6000-Year-Old Barley Sequenced
Researchers have successfully sequenced the genome of Chalcolithic barley grains for the first time.
3D Models May Yield Ovarian Cancer Insights
Researchers are developing new tools to decipher ovarian cancer developments through a 3D printing technology.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Plant Compounds Fight Together Against Colon Cancer
Research shows treating colon cancer cells with curcumin, then silymarin is more effective than treatment with each individually.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!