" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Adds Substantial Set of Genetic, Health Information to Online Database

Published: Thursday, February 27, 2014
Last Updated: Thursday, February 27, 2014
Bookmark and Share
Researchers will now have access to genetic data linked to medical information on a diverse group of more than 78,000 people.

The data, from one of the nation’s largest and most diverse genomics projects — Genetic Epidemiology Research on Aging (GERA) — have just been made available to qualified researchers through the database of Genotypes and Phenotypes (dbGaP), an online genetics database of the National Institutes of Health.

The GERA cohort — average age 63 — was developed collaboratively by Kaiser Permanente and the University of California, San Francisco (UCSF). The addition of the data to dbGaP was made possible with $24.9 million in support from the National Institute on Aging (NIA) and the National Institute of Mental Health, and the Office of the Director, all at NIH. Catherine Schaefer, Ph.D., of Kaiser Permanente Northern California and Neil Risch, Ph.D., of UCSF are co-principal investigators for GERA.

“Data from this immense and ethnically diverse population will be a tremendous resource for science,” said NIH Director Francis S. Collins, M.D., Ph.D. “It offers the opportunity to identify potential genetic risks and influences on a broad range of health conditions, particularly those related to aging.”

The GERA cohort is part of the Research Program on Genes, Environment, and Health (RPGEH), which includes more than 430,000 adult members of the Kaiser Permanente Northern California system. Data from this larger cohort include electronic medical records, behavioral and demographic information from surveys, and saliva samples from 200,000 participants obtained with informed consent for genomic and other analyses. The RPGEH database was made possible largely through early support from the Robert Wood Johnson Foundation to accelerate such health research.

“The GERA cohort has the largest number of people — of any age — with data in dbGaP,” said NIA Director Richard J. Hodes, M.D. “Federal funds were used to develop new approaches to genomics for this project and I’m pleased that the data are now ready in dbGaP for researchers’ use. I look forward to new insights that such a unique resource might offer for better health with age.”

The genetic information in the GERA cohort translates into more than 55 billion bits of genetic data. Using newly developed techniques, the researchers conducted genome-wide scans to rapidly identify single nucleotide polymorphisms (SNPs) in the genomes of the people in the GERA cohort. These data will form the basis of genome-wide association studies (GWAS) that can look at hundreds of thousands to millions of SNPs at the same time. The RPGEH then combined the genetic data with information derived from Kaiser Permanente’s comprehensive longitudinal electronic medical records, as well as extensive survey data on participants’ health habits and backgrounds, providing researchers with an unparalleled research resource.

In addition to diseases and conditions traditionally associated with aging, such as cardiovascular disease, cancer and osteoarthritis, researchers can explore the potential genetic underpinnings of a variety of diseases that affect people in adulthood, including depression, insomnia, diabetes, certain eye diseases and many others representing a variety of disease domains. Researchers will also be able to use the database to confirm or disprove other studies that use data from relatively small numbers of people, as well as to increase the size and power of their samples by adding participants from GERA to meta-analyses. The large cohort will also serve as a reference source of controls that researchers can compare to individuals with different conditions that they have studied.

“An exciting aspect of this dataset is that it will be updated and refreshed,” noted Winifred Rossi, deputy director of NIA’s Division of Geriatrics and Clinical Gerontology and program officer for the project. “As information is added to the Kaiser-UCSF database, the dbGaP database will also be updated.”

dbGaP was developed and is managed by the National Center for Biotechnology Information, a division of the National Library of Medicine at NIH. Investigators who are interested in applying for access to this database should follow the procedures on the dbGaP website. 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
Wednesday, January 13, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Scientific News
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Iron in the Blood Could Cause Cell Damage
Concentrations of iron similar to those delivered through standard treatments can trigger DNA damage within 10 minutes, when given to cells in the laboratory.
Criminal Justice Alcohol Program Linked to Decreased Mortality
Institute has announced that in the criminal justice alcohol program deaths dropped by 4.2 percent over six years.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!