Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

3-D Changes in DNA May Lead to a Genetic Form of Lou Gehrig’s Disease

Published: Friday, March 07, 2014
Last Updated: Friday, March 07, 2014
Bookmark and Share
NIH-funded scientists reveal how a genetic code variation results in devastating brain diseases.

New findings reveal how a mutation, a change in the genetic code that causes neurodegeneration, alters the shape of DNA, making cells more vulnerable to stress and more likely to die.

The particular mutation, in the C9orf72 gene, is the most common cause for amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease), and frontotemporal degeneration (FTD), the second most common type of dementia in people under 65.

This research by Jiou Wang, Ph.D., and his colleagues at Johns Hopkins University (JHU) was published in Nature and was partially funded by the National Institutes of Health’s National Institute of Neurological Disorders and Stroke (NINDS).

In ALS, the muscle-activating neurons in the spinal cord die, eventually causing paralysis. In FTD neurons in particular brain areas die leading to progressive loss of cognitive abilities. The mutation may also be associated with Alzheimer’s and Huntington’s diseases.

DNA contains a person’s genetic code, which is made up of a unique string of bases, chemicals represented by letters. Portions of this code are divided into genes that provide instructions for making molecules (proteins) that control how cells function.

The normal C9orf72 gene contains a section of repeating letters; in most people, this sequence is repeated two to 25 times. In contrast, the mutation associated with ALS and FTD can result in up to tens of thousands of repeats of this section.

Using sophisticated molecular techniques, Dr. Wang and his team showed that the mutation causes changes in the three-dimensional shape of DNA. DNA is normally shaped like a twisted ladder. However, the repeating sequences can fold into G-quadruplexes, stacks of square-shaped molecules known as G-quartets. "This structure has been described as a square building with each floor representing one G-quartet, normally two to four stories high,” said Dr. Wang, senior author of the paper.

Their results also showed that C9orf72 mutated DNA has profound effects on how the genetic message is processed in the cell. RNA, short for ribonucleic acid, acts as an important intermediary - a middleman - in the process that converts genetic information from DNA into functional proteins. This happens in two stages: conversion of the DNA code into RNA is called transcription. RNA then forms proteins during a process known as translation.

The investigators discovered that the mutated DNA forms DNA-RNA hybrid structures called R loops. Then they showed that G-quadruplexes and R-loops interfered with the transcription process. Cells taken from patients (containing the C9orf72 mutation) produced shorter transcription products (or transcripts) compared with control cells (without the mutation) taken from healthy volunteers.

These short transcripts result in abnormal functioning of the cell and can lead to cell death. “Unfortunately, these alternative DNA arrangements impede normal processing, much like a car encountering a series of speed bumps or the occasional roadblock while traveling to its destination,” said Dr. Wang.

Findings from Dr. Wang’s team also suggest that the C9orf72 mutation has an effect in the nucleolus, a cellular structure located within the nucleus (which contains the cell’s DNA) and the site where initial steps in protein assembly occur. The nucleolus also plays a key role in directing the cell’s response to stress.

The key protein inside the nucleolus is nucleolin. Dr. Wang teamed with Jeffrey D. Rothstein, M.D., from JHU, to study the effects of the C9orf72 mutation on nucleolin. They found that binding of the short transcription products formed by the C9orf72 mutation to nucleolin has toxic effects on cells.

The researchers show that in healthy cells without the mutation, nucleolin is present only in a certain area of the nucleus, but in cells obtained from ALS patients, nucleolin is scattered throughout the nucleus. They postulate that abnormal distribution of nucleolin causes cells to become stressed and more likely to die, which can result in the pathology associated with ALS and FTD.

For those experiments, the researchers used induced pluripotent stem cells (iPSC) containing the C9orf72 mutation that were derived from the skin of ALS patients. The iPSCs can be turned into different types of cells, in this case into motor neurons, which are the cells that die in patients with ALS. The iPSC technology lets scientists study in a dish the direct effects of disease-causing human mutations on brain or spinal cord cells.

“Our new study, along with previous work, highlight the great power of ALS iPSCs,” said Dr. Wang.

Dr. Rothstein is the director of the ALS iPSC Consortium, which is managed by NINDS. The consortium is a resource that was created in 2009 to develop iPSCs for the study of genetic forms of ALS. The iPSCs are stored at the NINDS Human Genetics Repository and are available for use by researchers.

“The availability of iPSCs from patients and healthy volunteers enabled Dr. Wang and his collaborators to address directly the consequences of the C9orf72 mutation in human motor neurons, the brain cells responsible for movement,” said Margaret Sutherland, Ph.D., program director at NINDS.

“The findings described in Dr. Wang’s paper open up a new pathogenic mechanism for ALS and FTD by providing insight into the biology associated with the C9orf72 mutation and identifying a potential path forward for therapy development,” said Dr. Sutherland. For example, the alternative DNA structures (G-quadruplexes and R-loops) may be targets for potential drugs.

“Understanding the biology of C9orf72 is fundamentally important as we work with pharmaceutical companies to develop therapies for these highly devastating diseases,” said co-author Dr. Rothstein.

Further research is needed to provide a complete understanding of how the C9orf72 mutation leads to disease.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Friday, May 20, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Serotonin Transporter Structure Revealed
Researchers determined the 3-D structure of the serotonin transporter and visualized how two common antidepressants interact with the protein.
Wednesday, April 20, 2016
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
Migration Creates Cancer Cell Vulnerabilities
Scientists found that migration can damage cancer cells’ nuclei and DNA, requiring repairs for their survival. The results may open new avenues for targeting metastatic cancer.
Wednesday, April 13, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
A New Platform for Discovering Antibiotics
Harvard chemists hope to shorten time, difficulty in measuring their effectiveness, potential.
Biosensor Detects Molecules Linked to Cancer, Alzheimer's and Parkinson's
Novel biosensor has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.
Gene That Lowers Heart Attack Risk Identified
Individuals with a rare twelve-letter deletion from a gene on chromosome 17 have significantly reduced non-HDL cholesterol levels and a 35% lower than average risk of heart disease.
Non-Toxic Approach to Treating Variety of Cancers
A team of researchers at Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine recently discovered a novel, non-toxic approach to treating a wide variety of cancers.
"Sunscreen" Gene May Guard Against Melanoma
USC-led study reveals that melanoma patients with deficient or mutant copies of the gene are less protected from harmful ultraviolet rays.
Real-Time Imaging of Embryo Development Could Pave the Way
Researchers at IMCB have developed advanced microscopy technologies to monitor embryo development for more effective human reproduction therapies.
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!