Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

3-D Changes in DNA May Lead to a Genetic Form of Lou Gehrig’s Disease

Published: Friday, March 07, 2014
Last Updated: Friday, March 07, 2014
Bookmark and Share
NIH-funded scientists reveal how a genetic code variation results in devastating brain diseases.

New findings reveal how a mutation, a change in the genetic code that causes neurodegeneration, alters the shape of DNA, making cells more vulnerable to stress and more likely to die.

The particular mutation, in the C9orf72 gene, is the most common cause for amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease), and frontotemporal degeneration (FTD), the second most common type of dementia in people under 65.

This research by Jiou Wang, Ph.D., and his colleagues at Johns Hopkins University (JHU) was published in Nature and was partially funded by the National Institutes of Health’s National Institute of Neurological Disorders and Stroke (NINDS).

In ALS, the muscle-activating neurons in the spinal cord die, eventually causing paralysis. In FTD neurons in particular brain areas die leading to progressive loss of cognitive abilities. The mutation may also be associated with Alzheimer’s and Huntington’s diseases.

DNA contains a person’s genetic code, which is made up of a unique string of bases, chemicals represented by letters. Portions of this code are divided into genes that provide instructions for making molecules (proteins) that control how cells function.

The normal C9orf72 gene contains a section of repeating letters; in most people, this sequence is repeated two to 25 times. In contrast, the mutation associated with ALS and FTD can result in up to tens of thousands of repeats of this section.

Using sophisticated molecular techniques, Dr. Wang and his team showed that the mutation causes changes in the three-dimensional shape of DNA. DNA is normally shaped like a twisted ladder. However, the repeating sequences can fold into G-quadruplexes, stacks of square-shaped molecules known as G-quartets. "This structure has been described as a square building with each floor representing one G-quartet, normally two to four stories high,” said Dr. Wang, senior author of the paper.

Their results also showed that C9orf72 mutated DNA has profound effects on how the genetic message is processed in the cell. RNA, short for ribonucleic acid, acts as an important intermediary - a middleman - in the process that converts genetic information from DNA into functional proteins. This happens in two stages: conversion of the DNA code into RNA is called transcription. RNA then forms proteins during a process known as translation.

The investigators discovered that the mutated DNA forms DNA-RNA hybrid structures called R loops. Then they showed that G-quadruplexes and R-loops interfered with the transcription process. Cells taken from patients (containing the C9orf72 mutation) produced shorter transcription products (or transcripts) compared with control cells (without the mutation) taken from healthy volunteers.

These short transcripts result in abnormal functioning of the cell and can lead to cell death. “Unfortunately, these alternative DNA arrangements impede normal processing, much like a car encountering a series of speed bumps or the occasional roadblock while traveling to its destination,” said Dr. Wang.

Findings from Dr. Wang’s team also suggest that the C9orf72 mutation has an effect in the nucleolus, a cellular structure located within the nucleus (which contains the cell’s DNA) and the site where initial steps in protein assembly occur. The nucleolus also plays a key role in directing the cell’s response to stress.

The key protein inside the nucleolus is nucleolin. Dr. Wang teamed with Jeffrey D. Rothstein, M.D., from JHU, to study the effects of the C9orf72 mutation on nucleolin. They found that binding of the short transcription products formed by the C9orf72 mutation to nucleolin has toxic effects on cells.

The researchers show that in healthy cells without the mutation, nucleolin is present only in a certain area of the nucleus, but in cells obtained from ALS patients, nucleolin is scattered throughout the nucleus. They postulate that abnormal distribution of nucleolin causes cells to become stressed and more likely to die, which can result in the pathology associated with ALS and FTD.

For those experiments, the researchers used induced pluripotent stem cells (iPSC) containing the C9orf72 mutation that were derived from the skin of ALS patients. The iPSCs can be turned into different types of cells, in this case into motor neurons, which are the cells that die in patients with ALS. The iPSC technology lets scientists study in a dish the direct effects of disease-causing human mutations on brain or spinal cord cells.

“Our new study, along with previous work, highlight the great power of ALS iPSCs,” said Dr. Wang.

Dr. Rothstein is the director of the ALS iPSC Consortium, which is managed by NINDS. The consortium is a resource that was created in 2009 to develop iPSCs for the study of genetic forms of ALS. The iPSCs are stored at the NINDS Human Genetics Repository and are available for use by researchers.

“The availability of iPSCs from patients and healthy volunteers enabled Dr. Wang and his collaborators to address directly the consequences of the C9orf72 mutation in human motor neurons, the brain cells responsible for movement,” said Margaret Sutherland, Ph.D., program director at NINDS.

“The findings described in Dr. Wang’s paper open up a new pathogenic mechanism for ALS and FTD by providing insight into the biology associated with the C9orf72 mutation and identifying a potential path forward for therapy development,” said Dr. Sutherland. For example, the alternative DNA structures (G-quadruplexes and R-loops) may be targets for potential drugs.

“Understanding the biology of C9orf72 is fundamentally important as we work with pharmaceutical companies to develop therapies for these highly devastating diseases,” said co-author Dr. Rothstein.

Further research is needed to provide a complete understanding of how the C9orf72 mutation leads to disease.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
Wednesday, January 13, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
Researchers Investigate How a Developing Brain is Assembled
NIH 3-D software tracks worm embryo's brain development.
Tuesday, December 08, 2015
Scientific News
Microdroplet Reactors Mimic Living Systems
Researchers use microdroplets to study non-equilibrium reactions like those in living organisms.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Envigo Rat Models Proven to be Susceptible to Intra-Vaginal HSV-2 Infection and Protectable
Scientific findings establish the effectiveness of new approach to investigate the protective effects of vaccine candidates and anti-viral microbodies and to study asymptomatic primary genital HSV-2 infection.
What do Banana Peels and Human Skin Have in Common?
Human skin and banana peels have something in common: they produce the same enzyme when attacked. By studying fruit, researchers have come up with an accurate method for diagnosing the stages of this form of skin cancer.
The Spice of Life
Scientists discover important genetic source of human diversity.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Drug that Activates Innate Immune System Identified
Researchers from the institute have identified a drug, which is straightforward to synthesize and to couple to antigens that induce an immune response and may prove useful in the generation of vaccines.
Removing Race from Human Genetic Research
A group of scientists are urging their colleagues to take a step forward and stop using racial categories when researching and studying human genetics.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!