Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

3-D Changes in DNA May Lead to a Genetic Form of Lou Gehrig’s Disease

Published: Friday, March 07, 2014
Last Updated: Friday, March 07, 2014
Bookmark and Share
NIH-funded scientists reveal how a genetic code variation results in devastating brain diseases.

New findings reveal how a mutation, a change in the genetic code that causes neurodegeneration, alters the shape of DNA, making cells more vulnerable to stress and more likely to die.

The particular mutation, in the C9orf72 gene, is the most common cause for amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease), and frontotemporal degeneration (FTD), the second most common type of dementia in people under 65.

This research by Jiou Wang, Ph.D., and his colleagues at Johns Hopkins University (JHU) was published in Nature and was partially funded by the National Institutes of Health’s National Institute of Neurological Disorders and Stroke (NINDS).

In ALS, the muscle-activating neurons in the spinal cord die, eventually causing paralysis. In FTD neurons in particular brain areas die leading to progressive loss of cognitive abilities. The mutation may also be associated with Alzheimer’s and Huntington’s diseases.

DNA contains a person’s genetic code, which is made up of a unique string of bases, chemicals represented by letters. Portions of this code are divided into genes that provide instructions for making molecules (proteins) that control how cells function.

The normal C9orf72 gene contains a section of repeating letters; in most people, this sequence is repeated two to 25 times. In contrast, the mutation associated with ALS and FTD can result in up to tens of thousands of repeats of this section.

Using sophisticated molecular techniques, Dr. Wang and his team showed that the mutation causes changes in the three-dimensional shape of DNA. DNA is normally shaped like a twisted ladder. However, the repeating sequences can fold into G-quadruplexes, stacks of square-shaped molecules known as G-quartets. "This structure has been described as a square building with each floor representing one G-quartet, normally two to four stories high,” said Dr. Wang, senior author of the paper.

Their results also showed that C9orf72 mutated DNA has profound effects on how the genetic message is processed in the cell. RNA, short for ribonucleic acid, acts as an important intermediary - a middleman - in the process that converts genetic information from DNA into functional proteins. This happens in two stages: conversion of the DNA code into RNA is called transcription. RNA then forms proteins during a process known as translation.

The investigators discovered that the mutated DNA forms DNA-RNA hybrid structures called R loops. Then they showed that G-quadruplexes and R-loops interfered with the transcription process. Cells taken from patients (containing the C9orf72 mutation) produced shorter transcription products (or transcripts) compared with control cells (without the mutation) taken from healthy volunteers.

These short transcripts result in abnormal functioning of the cell and can lead to cell death. “Unfortunately, these alternative DNA arrangements impede normal processing, much like a car encountering a series of speed bumps or the occasional roadblock while traveling to its destination,” said Dr. Wang.

Findings from Dr. Wang’s team also suggest that the C9orf72 mutation has an effect in the nucleolus, a cellular structure located within the nucleus (which contains the cell’s DNA) and the site where initial steps in protein assembly occur. The nucleolus also plays a key role in directing the cell’s response to stress.

The key protein inside the nucleolus is nucleolin. Dr. Wang teamed with Jeffrey D. Rothstein, M.D., from JHU, to study the effects of the C9orf72 mutation on nucleolin. They found that binding of the short transcription products formed by the C9orf72 mutation to nucleolin has toxic effects on cells.

The researchers show that in healthy cells without the mutation, nucleolin is present only in a certain area of the nucleus, but in cells obtained from ALS patients, nucleolin is scattered throughout the nucleus. They postulate that abnormal distribution of nucleolin causes cells to become stressed and more likely to die, which can result in the pathology associated with ALS and FTD.

For those experiments, the researchers used induced pluripotent stem cells (iPSC) containing the C9orf72 mutation that were derived from the skin of ALS patients. The iPSCs can be turned into different types of cells, in this case into motor neurons, which are the cells that die in patients with ALS. The iPSC technology lets scientists study in a dish the direct effects of disease-causing human mutations on brain or spinal cord cells.

“Our new study, along with previous work, highlight the great power of ALS iPSCs,” said Dr. Wang.

Dr. Rothstein is the director of the ALS iPSC Consortium, which is managed by NINDS. The consortium is a resource that was created in 2009 to develop iPSCs for the study of genetic forms of ALS. The iPSCs are stored at the NINDS Human Genetics Repository and are available for use by researchers.

“The availability of iPSCs from patients and healthy volunteers enabled Dr. Wang and his collaborators to address directly the consequences of the C9orf72 mutation in human motor neurons, the brain cells responsible for movement,” said Margaret Sutherland, Ph.D., program director at NINDS.

“The findings described in Dr. Wang’s paper open up a new pathogenic mechanism for ALS and FTD by providing insight into the biology associated with the C9orf72 mutation and identifying a potential path forward for therapy development,” said Dr. Sutherland. For example, the alternative DNA structures (G-quadruplexes and R-loops) may be targets for potential drugs.

“Understanding the biology of C9orf72 is fundamentally important as we work with pharmaceutical companies to develop therapies for these highly devastating diseases,” said co-author Dr. Rothstein.

Further research is needed to provide a complete understanding of how the C9orf72 mutation leads to disease.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Serotonin Transporter Structure Revealed
Researchers determined the 3-D structure of the serotonin transporter and visualized how two common antidepressants interact with the protein.
Wednesday, April 20, 2016
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
Migration Creates Cancer Cell Vulnerabilities
Scientists found that migration can damage cancer cells’ nuclei and DNA, requiring repairs for their survival. The results may open new avenues for targeting metastatic cancer.
Wednesday, April 13, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
NIH Awards Grants to Explore Vaccine Adjuvants
NIH awards six grants to explore how combination adjuvants improve vaccines.
Wednesday, April 06, 2016
Children With Cushing Syndrome May Have Higher Suicide Risk
Researchers at NIH have found that depression, anxiety and suicidal thoughts increase after treatment.
Wednesday, March 30, 2016
Experimental Vaccine Protects Against Dengue Virus
An experimental dengue vaccine protected all the volunteers who received it from infection with a live dengue virus.
Wednesday, March 30, 2016
Couples’ Pre-Pregnancy Caffeine Consumption Linked to Miscarriage Risk
Researchers at NIH have found daily multivitamin before and after conception greatly reduces miscarriage risk.
Friday, March 25, 2016
Study Finds Mindfulness Meditation Offers Relief For Low-Back Pain
Researchers at NIH have found that the MBSR and CBT may prove more effective than usual treatment in alleviating chronic low-back pain.
Wednesday, March 23, 2016
3-D Technology Enriches Human Nerve Cells For Transplant to Brain
This platform is expected to make transplantation of neurons a viable treatment for a broad range of human neurodegenerative disorders.
Friday, March 18, 2016
Scientific News
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Faster, Cheaper Way to Produce New Antibiotics
A novel way of synthesising a promising new antibiotic has been identified by scientists at the University of Bristol.
Process Contaminants in Vegetable Oils and Foods
Glycerol-based process contaminants found in palm oil, but also in other vegetable oils, margarines and some processed foods, raise potential health concerns for average consumers of these foods in all young age groups, and for high consumers in all age groups.
Improving Natural Killer Cancer Therapy
Vanderbilt University researchers discover transcription factor critical for NK cell expansion. Findings could lead to increased therapeutic efficacy.
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!