Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Announces Recruitment for Clinical Trial to Test New Tinnitus Treatment Device

Published: Friday, March 07, 2014
Last Updated: Friday, March 07, 2014
Bookmark and Share
Multi-center trial offers hope for millions of Americans with severe tinnitus.

Researchers supported by the National Institutes of Health are launching a clinical trial to test a device that uses nervous system stimuli to rewire parts of the brain, in hopes of significantly reducing or removing tinnitus, a persistent buzzing or ringing sound in the ears in the absence of any real sound.

The small clinical trial, which is recruiting volunteers, is being conducted at four centers through a cooperative agreement with MicroTransponder, Inc., a medical device company based in Dallas.

Roughly 10 percent of the adult population of the United States has experienced tinnitus lasting at least five minutes in the past year, and approximately 10 million of them have been bothered enough by the condition to seek a doctor.

Although tinnitus may be only an annoyance for some, for others the relentless ringing causes fatigue, depression, anxiety, and problems with memory and concentration. Available treatments help some people cope, but current therapies lack the potential to significantly reduce the bothersome symptoms of tinnitus.

The trial, supported by the National Institute on Deafness and Other Communication Disorders (NIDCD), a part of NIH, may mark the beginning of a change in how tinnitus is treated.

"Tinnitus affects nearly 24 million adult Americans," said James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. "It is also the number one service-connected disability for returning veterans from Iraq and Afghanistan. The kind of nervous system stimuli used in this study has already been shown to safely and effectively help people with epilepsy or depression. This therapy could offer a profoundly better way to treat tinnitus."

Most cases of chronic tinnitus are preceded by a loss of hearing as the result of damage to the inner ear from aging, injury, or long-term exposure to loud noise. When sensory cells in the inner ear are damaged, the resulting hearing loss changes some of the signals sent from the ear to neurons in the auditory cortex of the brain.

Scientists still haven't agreed upon what happens to create the illusion of sound when there is none, but the therapy being tested in this new clinical trial attempts to ameliorate the phantom sound of tinnitus by going to its source - the brain.

The auditory pathway is organized by what scientists call the tonotopic map, a structural arrangement in which different tone frequencies are transmitted separately along specific parts of the pathway. Hearing loss is the result of a loss in the ability of the auditory system to process certain frequencies. Earlier studies showed that the loss of the ability to hear these frequencies matched patterns of distortion in the neurons of the auditory cortex's tonotopic map.

This research suggests that tinnitus might be the result of the brain trying to regain the ability to hear those lost frequencies by turning up the signals of neurons in neighboring frequencies. Because there are too many neurons processing the same frequencies, they fire more strongly, more frequently and in concert with each other, even when the environment is quiet. It is these changing brain patterns that researchers believe could produce the perception of whooshing, ringing, or buzzing in the ear that characterizes tinnitus.

The new study uses a technique known as vagus nerve stimulation (VNS) that takes advantage of the brain's ability to reconfigure itself (neuroplasticity). During the therapy, patients wear headphones and hear a series of single frequency tones, paired with stimulation to the vagus nerve, a large nerve that runs from the head and neck to the abdomen. When stimulated, the vagus nerve releases acetylcholine, norepinephrine, and other chemicals that encourage neuroplasticity.

In an earlier NIDCD-funded study using a rat model, the technique was shown to reorganize neurons to respond to their original frequencies, subdue their activity, and reduce their synchronous firing, suggesting that the ringing sensation had stopped. The scientists subsequently tested a prototype device in a small group of human volunteers in Europe and observed encouraging results.

For this new study, two groups of adults who have had moderate-to-severe tinnitus for at least one year will participate in daily 2.5 hour sessions of VNS and audio tone therapy over six weeks. One group will get the VNS and tone test treatment immediately; the other will get a combination of VNS and tones that is not expected to have a therapeutic benefit. After six weeks, both groups will receive active test treatment.

Outcomes will be measured throughout the year-long trial using the Tinnitus Functional Index and the Tinnitus Handicap Questionnaire, two questionnaires that allow patients to report on the extent of their tinnitus. They will also be tested periodically to determine changes in minimum masking levels for the tinnitus - the decibel level of sound required to eliminate awareness of the tinnitus.

"This trial has the potential to open up a whole new world of tinnitus management," says Gordon Hughes, M.D., director of clinical trials at the NIDCD. "Currently, we usually offer patients a hearing aid if they have hearing loss or a masking device if they don't. None of these treatments cures tinnitus. But this new treatment offers the possibility of reducing or eliminating the bothersome perception of tinnitus in some patients."

The clinical trial sites are at the University of Texas at Dallas; University at Buffalo (SUNY), Buffalo; and the University of Iowa, Iowa City. An additional site will be added later in the year. More information about the trial and enrollment is available on the study's website, (http://www.tinnitustrial.com), or at (http://www.ClinicalTrials.gov) (NCT01962558).

"The support of the NIDCD has been essential to bringing this novel tinnitus therapy into the clinic," said MicroTransponder, Inc. CEO Frank McEachern. "The translation of scientific discovery into medical therapies is a long and difficult path. The NIH recognized the importance of our tinnitus research early on, which enabled us to secure additional private funding for the extensive development effort required to build a device for clinical trials."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Thursday, May 26, 2016
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
Wednesday, May 25, 2016
Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Friday, May 20, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!