Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Observing Behavior of Single Molecules in Real Time

Published: Monday, March 17, 2014
Last Updated: Monday, March 17, 2014
Bookmark and Share
New technique developed by Stanford scientists allows observation of single molecules of protein or DNA as they bind with other molecules.

Nearly every biological or chemical reaction that makes life possible involves single molecules interacting in the watery solution that sloshes in and around cells.

Now, a Stanford chemistry professor and his graduate student have developed a technique for observing these processes as they happen in real time.

W.E. Moerner, a professor of chemistry, specializes in single molecule fluorescence, a field that involves studying how biomolecules – such as DNA and enzymes – work in cells to carry out the processes that are critical to life. The new advance describes how Moerner and his graduate student, Quan Wang, modified an ABEL (Anti-Brownian ELectrokinetic) trap, a machine invented in Moerner's lab that uses electric fields to manipulate individual small molecules from the light they emit, to isolate a single strand of DNA and observe how it binds to other DNA, in aqueous solution.

The work is detailed in the journal Nature Methods.

Getting this process started takes a little bit of luck, Wang said, as they must wait until a single molecule happens to be in the vicinity of the trap. This all happens at an incredibly tiny scale. The trap covers about a square centimeter, but the molecules are just 1 nanometer long. (For perspective, that's trapping a single grain of pollen on a football field, and then, without ever touching it, studying its behavior and characteristics.)

Once a lone molecule has entered the trap, its motion comes under continuous surveillance. Although the molecule doesn't want to sit still, every time it attempts to escape, the ABEL trap automatically applies electric fields to push it back.

Using physical analysis and computational tricks from machine learning, Wang developed an algorithm to convert the observed single-molecule motions inside the trap into information about the molecule's size and electric charge. From this, the researchers can determine whether the target molecule has interacted with another molecule.

In the case of DNA, if it begins to hybridize – that is, if it begins to bond to a complementary strand of DNA – the readings from the trap will show that the trapped DNA has an increase in both size and charge. When the process reverses a few instants later – that is, when the DNA melts and its complementary strand falls off – the trapped molecule's size and charge change back correspondingly.

"It is really quite amazing to be able to trap a single short piece of single-stranded DNA, to watch it for many seconds and directly observe a partner strand bind and unbind," Moerner said. "This is really an essential process."

The researchers conducted similar tests using proteins, and Wang said that the technology in its current state can easily be applied to many different types of molecules to study other binding processes.

"We've done the proof of concept for the method, and soon we want to apply it to two very specific problems and get some science out of it," said Wang, who is a graduate student in electrical engineering.

The first involves drug design. Drugs target diseases by binding to receptor molecules on cells, and the drug's effectiveness often depends on how well and for how long it binds to its receptor. By gauging the size and total charge of the molecules as they form a complex, the trap can directly measure how long it takes for the drug to find its receptor and how long the complex stays together. This information could guide scientists toward designing drugs that better match their target receptor.

Another application is to study the role protein aggregation plays in various diseases. As people age, proteins can become "sticky" and accumulate, a hallmark of several diseases, including Huntington's. The trap provides a direct way to study the size distribution of these proteins and how they aggregate; understanding this effect could lead to treatments that inhibit it.

Other students and postdoctoral scholars in Moerner's group are working to make the trap respond even more quickly, to perform more optimally in other situations, or to study different properties of single molecules. Moerner said that the interdisciplinary makeup of his group (including him; he holds a degree in electrical engineering as well as in chemistry) is critical for understanding all the different facets of this work, and then for smart implementation of it.

"We use light to probe molecules – that's physics and chemistry," Moerner said. "And we apply it to biology and biomedical systems. But at the core is precise measurement, extracting as much information as possible from a single object, and that can be done with concepts from electrical engineering.

"It's a natural thing at Stanford for students in one department to do thesis research in another. It's one of the wonderful aspects at Stanford, and it can lead to wonderful work such as this."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Sleep Deprivation Affects Stem Cells, Reducing Transplant Efficiency
Although the research was done in mice, the findings have possible implications for bone marrow transplants, more properly called hematopoietic stem cell transplants, in humans.
Friday, October 16, 2015
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Friday, October 09, 2015
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Wednesday, October 07, 2015
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Monday, October 05, 2015
Drug Disarms Deadly C. difficile Bacteria Without Destroying Healthy Gut Flora
A drug that blocks the intestinal pathogen without killing resident, beneficial microbes may prove superior to antibiotics, currently the front-line treatment for the infection.
Friday, September 25, 2015
Virus Re-Engineered to Deliver Targeted Therapies
Researchers stripped a virus of its infectious machinery and turned its benign core into a delivery vehicle that can target sick cells while leaving healthy tissue alone.
Thursday, September 24, 2015
Combination Drug Therapy Shrinks Pancreatic Tumors In Mice
Two drugs that affect the structure and function of DNA have been found to block the growth of pancreatic tumor cells in mice, researchers hope the drugs can soon be tested in humans with the disease.
Thursday, September 24, 2015
Delivering Missing Protein Heals Damaged Hearts in Animals
Researchers have discovered that a particular protein, Fstl1, plays a key role in regenerating dead heart-muscle cells.
Tuesday, September 22, 2015
Key Mechanism in Gene Expression Discovered
RNA polymerase II makes life possible by expressing genes. Now, a team of Stanford biologists, chemists and applied physicists has observed it at work in real time.
Thursday, September 17, 2015
Drug Prevents Type 1 Diabetes In Mice
A compound that blocks the synthesis of hyaluronan, a substance generally found in in all body tissue, protected mice from getting Type 1 diabetes. The compound is already approved in Europe and Asia for the treatment of gallbladder disease.
Wednesday, September 16, 2015
New Method for Producing Vital Cancer Drug
Stanford scientists produced a common cancer drug – previously only available from an endangered plant – in a common laboratory plant.
Tuesday, September 15, 2015
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Monday, September 14, 2015
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Monday, August 24, 2015
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Thursday, August 20, 2015
Scientists Genetically Modify Yeast to Produce Opioids
The technique could improve access to medicines in impoverished nations, and later be used to develop treatments for other diseases.
Monday, August 17, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Best Test to Diagnose Strangles in Horses Identified
New research by Dr. Ashley Boyle of New Bolton Center’s Equine Field Service team shows that the best method for diagnosing Strangles in horses is to take samples from a horse’s guttural pouch and analyze them using a loop-mediated amplification (LAMP) polymerase chain reaction (PCR) test.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Antibiotics on Our Plates 'Could Lead to Health Catastrophe'
Two medical experts from The University of Queensland are urging China to curb its use of antibiotics in animals to avoid what could be a ‘major health catastrophe’ for humans.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos