Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells Created from a Drop of Blood

Published: Thursday, March 20, 2014
Last Updated: Thursday, March 20, 2014
Bookmark and Share
The DIY finger-prick technique developed by scientists from A*STAR opens door for extensive stem cell banking.

Scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) have developed a method to generate human induced pluripotent stem cells (hiPSCs) from a single drop of finger-pricked blood. The method also enables donors to collect their own blood samples, which they can then send to a laboratory for further processing. The easy access to blood samples using the new technique could potentially boost the recruitment of greater numbers and diversities of donors, and could lead to the establishment of large-scale hiPSC banks.

By genetic reprogramming, matured human cells, usually blood cells, can be transformed into hiPSCs. As hiPSCs exhibit properties remarkably similar to human embryonic stem cells, they are invaluable resources for basic research, drug discovery and cell therapy. In countries like Japan, USA and UK[1], a number of hiPSC bank initiatives have sprung up to make hiPSCs available for stem cell research and medical studies.

Current sample collection for reprogramming into hiPSCs include invasive measures such as collecting cells from the bone marrow or skin, which may put off many potential donors. Although hiPSCs may also be generated from blood cells, large quantities of blood are usually required. In the paper published online on the Stem Cell Translational Medicine journal, scientists at IMCB showed for the first time that single-drop volumes of blood are sufficient for reprogramming into hiPSCs. The finger-prick technique is the world's first to use only a drop of finger-pricked blood to yield hiPSCs with high efficiency. A patent has been filed for the innovation.

The accessibility of the new technique is further enhanced with a DIY sample collection approach. Donors may collect their own finger-pricked blood, which they can then store and send it to a laboratory for reprogramming. The blood sample remains stable for 48 hours and can be expanded for 12 days in culture, which therefore extends the finger-prick technique to a wide range of geographical regions for recruitment of donors with varied ethnicities, genotypes and diseases.

By integrating it with the hiPSC bank initiatives, the finger-prick technique paves the way for establishing diverse and fully characterised hiPSC banking for stem cell research. The potential access to a wide range of hiPSCs could also replace the use of embryonic stem cells, which are less accessible. It could also facilitate the set-up of a small hiPSC bank in Singapore to study targeted local diseases.

Dr Loh Yuin Han Jonathan, Principal Investigator at IMCB and lead scientist for the finger-prick hiPSC technique, said, "It all began when we wondered if we could reduce the volume of blood used for reprogramming. We then tested if donors could collect their own blood sample in a normal room environment and store it. Our finger-prick technique, in fact, utilised less than a drop of finger-pricked blood. The remaining blood could even be used for DNA sequencing and other blood tests."

Dr Stuart Alexander Cook, Senior Consultant at the National Heart Centre Singapore and co-author of the paper, said "We were able to differentiate the hiPSCs reprogrammed from Jonathan's finger-prick technique, into functional heart cells. This is a well-designed, applicable technique that can unlock unrealized potential of biobanks around the world for hiPSC studies at a scale that was previously not possible."

Prof Hong Wanjin, Executive Director at IMCB, said "Research on hiPSCs is now highly sought-after, given its potential to be used as a model for studying human diseases and for regenerative medicine. Translational research and technology innovations are constantly encouraged at IMCB and this new technique is very timely. We hope to eventually help the scientific community gain greater accessibility to hiPSCs for stem cell research through this innovation."

[1] New York Stem Cell Foundation, California Institute for Regenerative Medicine, Wellcome Trust Sanger Institute and Kyoto University Center for iPS Cell Research & Application are some institutes which are establishing hiPSC banks.

The research findings described in this media release can be found in the Stem Cell Translational Medicine Journal, under the title, "Human Finger-prick iPSCs Facilitate the Development of Stem Cell Banking" by Hong-Kee Tan,1, Cheng-Xu Delon Toh,1,16, Dongrui Ma,2,16, Binxia Yang,1, Tong Ming Liu,3, Jun Lu,2, Chee-Wai Wong,1, Tze-Kai Tan,1, Hu Li,4, Christopher Syn,5,15, Eng-Lee Tan,6,7, Bing Lim,3,8, Yoon-Pin Lim,9,10,11, Stuart A. Cook,2,12,13,14, Yuin-Han Loh,1,15.

1. Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore

2. Research and Development Unit (RDU), National Heart Centre Singapore, Singapore

3. Stem Cell and Developmental Biology, Genome Institute of Singapore, A*STAR, Singapore

4. Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, USA

5. Health Sciences Authority, Singapore

6. Centre for Biomedical and Life Sciences, Singapore Polytechnic, Singapore

7. Department of Paediatrics, University Children's Medical Institute, National University Hospital, Singapore

8. Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA

9. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

10. NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore

11. Bioinformatics Institute, A*STAR, Singapore

12. Duke-NUS Graduate Medical School, Singapore

13. Royal Brompton Hospital, London, UK

14. National Heart & Lung Institute, Imperial College, London, UK

15. Department of Biological Sciences, National University of Singapore, Singapore


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Thursday, September 22, 2016
Advancing the Understanding and Research of Botulinum Neurotoxin Biology
Ipsen and the Institute of Molecular and Cell Biology (IMCB) announce the signature of a research partnership to study the intracellular trafficking of botulinum neurotoxins (BoNTs) within neurons.
Monday, May 16, 2016
A*STAR Findings on Breast Cancer Hold Potential for New Treatments
Computational techniques to increase understanding of diseases and improve patient treatments.
Friday, October 30, 2015
Rapid Test Kit Detects Dengue Antibodies from Saliva
IBN’s MedTech innovation simplifies diagnosis of infectious diseases.
Friday, January 30, 2015
A*STAR Scientists Discover Gene Critical for Proper Brain Development
This gene accounts for the size of the human brain and potentially our superior cognitive abilities.
Friday, December 26, 2014
A Gold Catalyst for Clear Water
Mixed nanoparticle systems may help purify water and generate hydrogen.
Wednesday, December 24, 2014
Anti-Diabetic Drug Springs New Hope for Tuberculosis Patients
Drug for treating diabetes can double up as adjunct treatment for tuberculosis.
Wednesday, December 17, 2014
Gene Associated with an Aggressive Breast Cancer Identified
Over-expressed gene in triple negative breast cancer offers new diagnostics for risk assessment.
Wednesday, December 03, 2014
Diagnostics Development Hub To Complement Biomed Research Launched
Hub will leverage strategic public-public and public-private partnerships to accelerate market readiness of locally developed diagnostic products.
Friday, November 28, 2014
Protecting the Body from Itself
Scientists advance understanding of autoimmunity with discovery of link between major immune cell types.
Friday, September 26, 2014
Colorful Nanoprobes Make A Simple Test
Gold nanoparticles linked to single-stranded DNA create a simple but versatile genetic testing kit.
Thursday, September 25, 2014
Lab on a Breathing Chip
Human nasal epithelial cells, cultured on a microchip, react to air pollutants just like they would in the upper airway.
Saturday, September 13, 2014
Understanding and Improving the Body's Fight Against Pathogens
A*STAR scientists find new targets for modulating antibody response.
Tuesday, September 02, 2014
Novel Gene Predicts Both Breast Cancer Relapse and Response to Chemotherapy
A predictive marker discovered by scientists at A*STAR and NUS could help doctors classify breast cancer patients for more effective treatment.
Thursday, August 21, 2014
High Capacity Antibody Purification
Researchers from the A*Star Bioprocessing Technology Institute have used magnetic nanoparticles to break the capacity barrier for antibody purification.
Sunday, August 17, 2014
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Forensic 3D Documentation of Skin Injuries
In this study, the validity of using photogrammetry for documenting injuries in a pathological context was demonstrated.
3-D Printed Dog’s Nose Improves Vapor Detection
By mimicking how dogs get their whiffs, a team of government and university researchers have demonstrated that “active sniffing” can improve by more than 10 times the performance of current technologies that rely on continuous suction to detect trace amounts of explosives and other contraband.
New Markers for Forensic Body-fluid Identification
University of Bonn researchers have successfully identified specific Micro-RNA signatures to help forensically identify body fluids.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!