Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cancer Biologists Link Tumor Suppressor Gene to Stem Cells

Published: Thursday, March 27, 2014
Last Updated: Thursday, March 27, 2014
Bookmark and Share
The findings appear online in the journal eLife.

Just as archeologists try to decipher ancient tablets to discern their meaning, UT Southwestern Medical Center cancer biologists are working to decode the purpose of an ancient gene considered one of the most important in cancer research.

The p53 gene appears to be involved in signaling other cells instrumental in stopping tumor development. But the p53 gene predates cancer, so scientists are uncertain what its original function is.

In trying to unravel the mystery, Dr. John Abrams, Professor of Cell Biology at UT Southwestern, and his team made a crucial new discovery - tying the p53 gene to stem cells. Specifically, his lab found that when cellular damage is present, the gene is hyperactive in stem cells, but not in other cells. The findings suggest p53’s tumor suppression ability may have evolved from its more ancient ability to regulate stem cell growth.

“The discovery was that only the stem cells light up. None of the others do. The exciting implication is that we are able to understand the function of p53 in stem cells,” said Dr. Abrams, Chair of the Genetics and Development program in UT Southwestern’s Graduate School of Biomedical Sciences. “We may, in fact, have some important answers for how p53 suppresses tumors.”

p53 is one of the hardest working and most effective allies in the fight against cancer, said Dr. Abrams. It regulates other genes, marshaling them to carry out an untold number of preemptive attacks and obliterate many pre-cancerous cells before they ever pose a threat. In nearly every case where there’s a tumor, p53 is damaged or deranged, strongly suggesting that it is a tumor suppressant.

Stem cells are one of the body’s most useful cells because of their regenerative capabilities. Stem cells produce daughter cells, one that is a stem cell and another that can become virtually any kind of cell that’s needed, such as a blood cell or a kidney cell.

Stem cells have received tremendous attention in cancer research because of the stem cell hypothesis. That hypothesis maintains that malignant tumors are initiated and maintained by a population of tumor cells that have properties similar to adult stem cells.

“What this new finding tells us is that an ancient functionality of p53 was hard-wired into stem cell function,” said Dr. Abrams, senior author. “From the standpoint of trying to decipher cancer biology, that’s a pretty profound observation.”

To study the gene, researchers in Dr. Abrams lab, including Dr. Annika Wylie, postdoctoral research fellow and first author on the paper, developed a transgenic sensor that makes cells glow when they are active in drosophila, or fruit flies. Other UT Southwestern researchers involved included Dr. Michael Buszczak, Assistant Professor of Molecular Biology.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Regenerative Medicine Biologists Discover a Cellular Structure that Explains Fate of Stem Cells
The findings are presented in the journal Nature.
Thursday, July 02, 2015
Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
Boosting Gut Bacteria Defense System May Lead to Better Treatments
Life-threatening bloodstream infections reversed by enhancing a specific immune defense response.
Tuesday, June 09, 2015
Immunity Enzyme Defends Against Tuberculosis Infection
Study shows that cGAS enzyme is essential for defense against the tuberculosis bacteria.
Wednesday, June 03, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
UT Southwestern’s Dr. Philipp Scherer Receive Banting Medal
Dr. Scherer will receive the prestigious Medal for diabetes research.
Friday, May 08, 2015
Mutations in Two Genes Linked to Familial Pulmonary Fibrosis and Telomere Shortening
PARN and RTEL1 genes strengthen the link between lung fibrosis and telomere dysfunction.
Tuesday, May 05, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Scherer to Receive Banting Medal for Diabetes Research
Medal recognizes significant, long-term contributions to the understanding, treatment, or prevention of diabetes.
Thursday, April 30, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!