Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Antimicrobial Resistance Remains Commonly Detected in Bacteria in Humans, Animals and Food

Published: Wednesday, March 26, 2014
Last Updated: Thursday, March 27, 2014
Bookmark and Share
Bacteria most frequently causing food-borne infections show significant resistance to common antimicrobials, according to the EFSA-ECDC European Union Summary Report.

Data show that combined resistance (co-resistance) to critically important antimicrobials remains low. While this means that treatment options for serious infections with these zoonotic bacteria are available in most cases, the fact that antimicrobial resistance was commonly detected is cause for concern.

If bacteria become clinically resistant to several antimicrobials (multidrug-resistant), treating the infections they cause can become more difficult or even impossible. In addition, the development of antimicrobial resistance (AMR) in bacteria in animals and food can also compromise the effective treatment of human infections, as resistant bacteria and resistance genes may be transferred to humans from animals and food. “That’s why a prudent use of antibiotics is crucial, not only in humans, but also in animals”, warned Marta Hugas, Acting Head of EFSA’s Risk Assessment and Scientific Assistance Department.

“In humans, the levels of clinical resistance to antimicrobials showed a great variability across the Member States, partly due to the use of different methods and criteria for interpreting data across the EU. In 2014, ECDC is launching the EU protocol for harmonised monitoring of antimicrobial resistance in human isolates of Salmonella and Campylobacter. Thus, we expect to get more accurate data from countries and as a result better comparability of data” said Johan Giesecke, Chief Scientist at ECDC.

Key findings
The joint report shows that clinical resistance in humans to commonly used antimicrobials in Salmonellaspp. isolates was frequently detected at the EU level, with almost half of the isolates being resistant to at least one antimicrobial, and 28.9% of isolates being multidrug-resistant. However, levels of clinical resistance and co-resistance in Salmonella spp. isolates to critically important antimicrobials were low (0.2% co-resistance across the 12 Member States that submitted data).

Microbiological resistance in animals to commonly used antimicrobials in Salmonella spp. isolates was frequently detected in the animal species monitored, especially in broilers, pigs and turkeys. Microbiological resistance to ciprofloxacin (a critically important antimicrobial), was frequently observed in broilers and turkeys. Co-resistance to the critically important antimicrobials, ciprofloxacin and cefotaxime, was either not detected or reported at very low levels in reporting Member States [1].

In Campylobacter spp. isolates from human cases, clinical resistance to common antimicrobials was frequently detected. Very high proportions of isolates (47.4% EU average) were resistant to the critically important antimicrobial ciprofloxacin with increasing trends observed in several Member States.

Microbiological resistance to commonly used antimicrobials in Campylobacter spp. isolates was frequently detected in broilers. Co-resistance to critically important antimicrobials, ciprofloxacin and erythromycin, in C. jejuni in broilers was either not detected or reported at low levels.

Microbiological resistance to commonly used antimicrobials in E. coli isolates was frequently reported in broilers and pigs. Co-resistance to critically important antimicrobials in these animal species was mostly not detected or recorded at very low levels among the reporting Member States.

EFSA and ECDC monitor AMR in humans, animals and food. This is a pre-requisite to understanding how AMR develops and spreads. In its 2011 action plan against the rising threats from AMR, the European Commission identified key priority areas, including improved monitoring of antimicrobial resistance, to which this joint report makes an important contribution.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos