Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH-Funded Atlas Details Gene Activity of the Prenatal Human Brain

Published: Friday, April 04, 2014
Last Updated: Friday, April 04, 2014
Bookmark and Share
NIH-funded resource offers clues to psychiatric disorders.

A comprehensive three-dimensional atlas of the developing human brain that incorporates gene activity along with anatomical reference atlases and neuroimaging data has released its first major report online in Nature.

This National Institutes of Health (NIH)-funded resource, freely available to the public, enables researchers to answer questions related to the early roots of brain-based disorders such as autism and schizophrenia.

This big science endeavor, which highlights the transcriptome - when and where genes are turned on in the brain - and anatomy of the human brain during mid-term pregnancy, was undertaken at the Allen Institute for Brain Science in Seattle. It is the first installment of a consortium project funded by the National Institute of Mental Health (NIMH), part of the NIH, called the BrainSpan Atlas of the Developing Human Brain, which aims to profile gene activity throughout the course of brain development.

"Many neuropsychiatric diseases are likely the result of abnormal brain development during prenatal life," said lead author Ed Lein, Ph.D., of the Allen Institute. "An anatomically precise molecular atlas of the brain during this time period is a first step to understanding how the human brain develops normally and what can go wrong."

Although animal studies have provided invaluable insights in the basic mechanisms of brain function, there are limitations that make studies based on human tissues, which are very difficult to obtain, incredibly important.

One key area is the neocortex, the outermost brain region involved in higher functions such as action and thought. The neocortex is smooth in rodents; in humans and non-human primates, it is much more complexly organized, elaborately folded into grooves and wrinkles called sulci and gyri.

Further differences in developmental compartments of this area exist between humans and non-human primates. The aim of this highly detailed atlas was to analyze all genes at this level of granularity, allowing meaningful analysis of the molecular underpinnings of human cortical development. Many psychiatric disorders show altered gene activity in the cortex, possibly highlighting changes that occurred during development of this region.

Lein and other researchers studied four donated, intact, high-quality human prenatal brains from preterm stillbirths - two from 15-16 weeks and two from 21 weeks post-conception - as a framework for their atlas. Contributing labs provided data from a variety of genomic and imaging techniques.

The BrainSpan Atlas aims to inspire new hypotheses regarding human brain development, and has already led to some surprising findings. For example, the study authors found significant differences between mouse and human brains in the subplate zone, a developmentally transient structure critical for proper cortical development.

On the other hand, the researchers expected to find a unique molecular signature for the outer portion of the subventricular zone, an area which is not found in mice and which contains a hugely expanded pool of neuronal stem cells that give rise to our greatly expanded neocortex. Surprisingly, despite its much larger size, no significant differences were found between this zone and the inner portion of this layer that is conserved from mouse to human.

"The BrainSpan Atlas becomes very powerful when one can understand where and when a particular gene is used - for instance, is it active in precursor cells or in the neurons derived from them?" said Lein, who gave the example that autism candidate genes are expressed very early in the cortex. Knowledge of the time and location of these genes may lead to future treatment targets and early interventions for this brain disorder, he added.

The BrainSpan Atlas already is making inroads in research surrounding human brain development and disease.

"Although the many genes associated with autism and schizophrenia don't show a clear relationship to each other in the adult brain, the BrainSpan Atlas reveals how these diverse genes are connected in the developing brain," said NIMH Director Thomas R. Insel, M.D. "Findings of what goes on early in the prenatal brain can lead to the development of biomarkers for diagnosing brain disorders and for matching patients to treatment options most likely to be successful.

"This atlas is a clear example of the progress that can be made when the public and private sectors work together," Insel said. "On this first anniversary of the BRAIN Initiative, we are encouraged to see the impact the BrainSpan Atlas is already making on brain research."

The resource is freely available for viewing, searching, and data mining for gene activity patterns as part of the BrainSpan Atlas of the Developing Human Brain Developing Human Brain (http://brainspan.org), and can also be found via the Allen Brain Atlas data portal Allen Brain Atlas data portal (http://www.brain-map.org).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Friday, May 20, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Serotonin Transporter Structure Revealed
Researchers determined the 3-D structure of the serotonin transporter and visualized how two common antidepressants interact with the protein.
Wednesday, April 20, 2016
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
Migration Creates Cancer Cell Vulnerabilities
Scientists found that migration can damage cancer cells’ nuclei and DNA, requiring repairs for their survival. The results may open new avenues for targeting metastatic cancer.
Wednesday, April 13, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
A Peachy Defense System for Seeds
ETH chemists are developing a new coating method to protect seeds from being eaten by insects. In doing so, they have drawn inspiration from the humble peach and a few of its peers.
Fighting Cancer with Borrowed Immunity
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Making Virus Sensors Cheap and Simple
Researchers at The University of Texas at Austin demonstrated the ability to detect single viruses in a solution containing murine cytomegalovirus (MCMV).
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!