Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Immune Organ Regenerated in Mice

Published: Tuesday, April 08, 2014
Last Updated: Tuesday, April 08, 2014
Bookmark and Share
Scientists have for the first time used regenerative medicine to fully restore a degenerated organ in a living animal.

The team from the Medical Research Council (MRC) Centre for Regenerative Medicine, at the University of Edinburgh, rebuilt the thymus of very old mice by reactivating a natural mechanism that gets shut down with age. 

The regenerated thymus was very similar to one in a young mouse in terms of structure and the genes expressed. The function of the organ was also restored, and mice receiving the treatment began making more T cells – a type of white blood cell important in fighting infection. However, the researchers do not yet know if the immune system of the older mice was strengthened. The research is published today in the journal Development.

Professor Clare Blackburn from the MRC Centre for Regenerative Medicine, at the University of Edinburgh, who led the research, said:

“By targeting a single protein, we have been able to almost completely reverse age-related shrinking of the thymus. Our results suggest that targeting the same pathway in humans may improve thymus function and therefore boost immunity in elderly patients, or those with a suppressed immune system. However, before we test this in humans we need to carry out more work to make sure the process can be tightly controlled.”

The thymus, located in front of the heart, is the first organ to deteriorate as we age. This shrinking is one of the main reasons our immune system becomes less effective and we lose the ability to fight off new infections, such as flu, as we get older. 

Researchers targeted a key part of this process – a protein called FOXN1, which helps to control how important genes in the thymus are switched on. They used genetically modified mice to enable them to increase levels of this protein using chemical signals. By doing so they managed to instruct immature cells in the thymus – similar to stem cells – to rebuild the organ in the older mice. The regenerated thymus was more than twice the size than in the untreated mice. 

Dr Rob Buckle, Head of Regenerative Medicine at the MRC, said:

“One of the key goals in regenerative medicine is harnessing the body’s own repair mechanisms and manipulating these in a controlled way to treat disease. This interesting study suggests that organ regeneration in a mammal can be directed by manipulation of a single protein, which is likely to have broad implications for other areas of regenerative biology.”

Previous attempts to provoke thymus regeneration have involved using sex hormones, but these have resulted in only temporary recovery of size and function of the organ. In this study, the recovery of the thymus was sustainable, but more work is needed to ensure there are no unintended consequences of increasing FOXN1.

The research was funded by Leukaemia and Lymphoma Research, the Darwin Trust of Edinburgh, the MRC and the European Union.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

MRC Technology, Alzheimer’s Association Collaborate
MRC Technology (MRCT), an independent medical research charity based in London, and the Alzheimer’s Association in Chicago have entered into an agreement to review and monitor the Association’s grant-funded research portfolio.
Thursday, January 21, 2016
Study Shows Blocking Brain Inflammation Could Help Alzheimer's
The research was jointly funded by the Medical Research Council (MRC) and Alzheimer’s Research UK.
Saturday, January 09, 2016
A Fundamental Protection Mechanism Against Formalin In Mammals is Revealed
Formaldehyde, or formalin, is well known to all of us as a common chemical used in many industrial processes and also as a preservative, remarkably we also produce formaldehyde in our bodies.
Wednesday, September 30, 2015
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Wednesday, July 22, 2015
MRC, GSK and Five Leading UK Universities Collaborate
Collaboration to crack difficult disease areas.
Thursday, July 16, 2015
‘Mini Bile Ducts’ used to Discover New Drugs that could Prevent Liver Damage
An experimental cystic fibrosis drug has been shown to prevent the disease’s damage to the liver, thanks to a world-first where scientists grew mini bile ducts in the lab.
Tuesday, July 14, 2015
First RNAi Meiosis Screen Reveals Genes Essential to Generate Eggs
Screening techniques developed leading to the discovery of genes essential for meiosis in mammals.
Wednesday, July 08, 2015
Study Identifies New Way to Kill the Malaria Parasite
Scientists have discovered new ways in which the malaria parasite survives in the blood stream of its victims, a discovery that could pave the way to new treatments for the disease.
Tuesday, July 07, 2015
Making Vaccines More Effective In The Elderly
Compound shown to restore the immune system’s inbuilt memory.
Tuesday, November 11, 2014
AstraZeneca, MRC Collaboration to Create New Centre for Early Drug Discovery
The Companies today announced the groundbreaking collaboration aimed at better understanding the mechanisms of human disease. The collaboration will see the creation of a joint research facility at AstraZeneca’s new R&D centre in Cambridge in the UK.
Monday, March 31, 2014
MRC Invests £32M to Improve Data Research
Investment will improve capability, capacity and capital infrastructure in medical bioinformatics.
Friday, February 07, 2014
Redirecting the Rules of Attraction in Fruit Flies
MRC researchers have discovered a biological switch that determines which part of the fruit fly’s brain responds to pheromones, depending on whether the fruit fly is male or female.
Friday, December 20, 2013
A Gene Mutation for Excessive Alcohol Drinking Found
UK researchers have discovered a gene that regulates alcohol consumption and when faulty can cause excessive drinking.
Wednesday, November 27, 2013
MRC Laboratory of Molecular Biology Alumni Awarded Nobel Prize for Chemistry
Professor Michael Levitt, Professor Arieh Warshel and Professor Martin Karplus awarded the 2013 Nobel Prize in Chemistry.
Monday, October 14, 2013
Study Leads to Alzheimer's Breakthrough
Researchers at the Medical Research Council Toxicology Unit have used an orally-administered compound to block a major pathway leading to brain cell death in mice, preventing neurodegeneration.
Thursday, October 10, 2013
Scientific News
Breaking Cell Barriers with Retractable Protein Nanoneedles
Adapting a bacterial structure, institute researchers have developed protein actuators that can mechanically puncture cells.
Gene Signature could Lead to a New Way of Diagnosing Lyme Disease
Lyme disease patients had distinctive gene signatures that persisted for at least three weeks, even after they had taken the antibiotics.
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!