Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Immune Organ Regenerated in Mice

Published: Tuesday, April 08, 2014
Last Updated: Tuesday, April 08, 2014
Bookmark and Share
Scientists have for the first time used regenerative medicine to fully restore a degenerated organ in a living animal.

The team from the Medical Research Council (MRC) Centre for Regenerative Medicine, at the University of Edinburgh, rebuilt the thymus of very old mice by reactivating a natural mechanism that gets shut down with age. 

The regenerated thymus was very similar to one in a young mouse in terms of structure and the genes expressed. The function of the organ was also restored, and mice receiving the treatment began making more T cells – a type of white blood cell important in fighting infection. However, the researchers do not yet know if the immune system of the older mice was strengthened. The research is published today in the journal Development.

Professor Clare Blackburn from the MRC Centre for Regenerative Medicine, at the University of Edinburgh, who led the research, said:

“By targeting a single protein, we have been able to almost completely reverse age-related shrinking of the thymus. Our results suggest that targeting the same pathway in humans may improve thymus function and therefore boost immunity in elderly patients, or those with a suppressed immune system. However, before we test this in humans we need to carry out more work to make sure the process can be tightly controlled.”

The thymus, located in front of the heart, is the first organ to deteriorate as we age. This shrinking is one of the main reasons our immune system becomes less effective and we lose the ability to fight off new infections, such as flu, as we get older. 

Researchers targeted a key part of this process – a protein called FOXN1, which helps to control how important genes in the thymus are switched on. They used genetically modified mice to enable them to increase levels of this protein using chemical signals. By doing so they managed to instruct immature cells in the thymus – similar to stem cells – to rebuild the organ in the older mice. The regenerated thymus was more than twice the size than in the untreated mice. 

Dr Rob Buckle, Head of Regenerative Medicine at the MRC, said:

“One of the key goals in regenerative medicine is harnessing the body’s own repair mechanisms and manipulating these in a controlled way to treat disease. This interesting study suggests that organ regeneration in a mammal can be directed by manipulation of a single protein, which is likely to have broad implications for other areas of regenerative biology.”

Previous attempts to provoke thymus regeneration have involved using sex hormones, but these have resulted in only temporary recovery of size and function of the organ. In this study, the recovery of the thymus was sustainable, but more work is needed to ensure there are no unintended consequences of increasing FOXN1.

The research was funded by Leukaemia and Lymphoma Research, the Darwin Trust of Edinburgh, the MRC and the European Union.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Wednesday, July 22, 2015
MRC, GSK and Five Leading UK Universities Collaborate
Collaboration to crack difficult disease areas.
Thursday, July 16, 2015
‘Mini Bile Ducts’ used to Discover New Drugs that could Prevent Liver Damage
An experimental cystic fibrosis drug has been shown to prevent the disease’s damage to the liver, thanks to a world-first where scientists grew mini bile ducts in the lab.
Tuesday, July 14, 2015
First RNAi Meiosis Screen Reveals Genes Essential to Generate Eggs
Screening techniques developed leading to the discovery of genes essential for meiosis in mammals.
Wednesday, July 08, 2015
Study Identifies New Way to Kill the Malaria Parasite
Scientists have discovered new ways in which the malaria parasite survives in the blood stream of its victims, a discovery that could pave the way to new treatments for the disease.
Tuesday, July 07, 2015
Making Vaccines More Effective In The Elderly
Compound shown to restore the immune system’s inbuilt memory.
Tuesday, November 11, 2014
AstraZeneca, MRC Collaboration to Create New Centre for Early Drug Discovery
The Companies today announced the groundbreaking collaboration aimed at better understanding the mechanisms of human disease. The collaboration will see the creation of a joint research facility at AstraZeneca’s new R&D centre in Cambridge in the UK.
Monday, March 31, 2014
MRC Invests £32M to Improve Data Research
Investment will improve capability, capacity and capital infrastructure in medical bioinformatics.
Friday, February 07, 2014
Redirecting the Rules of Attraction in Fruit Flies
MRC researchers have discovered a biological switch that determines which part of the fruit fly’s brain responds to pheromones, depending on whether the fruit fly is male or female.
Friday, December 20, 2013
A Gene Mutation for Excessive Alcohol Drinking Found
UK researchers have discovered a gene that regulates alcohol consumption and when faulty can cause excessive drinking.
Wednesday, November 27, 2013
MRC Laboratory of Molecular Biology Alumni Awarded Nobel Prize for Chemistry
Professor Michael Levitt, Professor Arieh Warshel and Professor Martin Karplus awarded the 2013 Nobel Prize in Chemistry.
Monday, October 14, 2013
Study Leads to Alzheimer's Breakthrough
Researchers at the Medical Research Council Toxicology Unit have used an orally-administered compound to block a major pathway leading to brain cell death in mice, preventing neurodegeneration.
Thursday, October 10, 2013
£25m to Kick-Start ‘Industrial Revolution’ in Regenerative Medicine
Applications will include Parkinson’s disease, cardiovascular disease, wound and musculoskeletal repair, eye disorders and deafness.
Wednesday, September 11, 2013
3D Tissue Grown from Stem Cells - New Model System for Brain Development
An international team of researchers has used stem cells to create a 3D structure that mimics early human brain development.
Monday, September 02, 2013
New Type of Blood Stem Cell Could Help Solve Platelet Shortage
Scientists have identified a new type of bone marrow stem cell in mice that is primed to produce large numbers of vital blood-clotting platelets.
Tuesday, August 13, 2013
Scientific News
Health Risks of Saturated Fats Aggravated by Immune Response
Research shows that the presence of saturated fats resulted in monocytes migrating into the tissues of vital organs.
Changing the Biological Data Visualisation World
Scientists at TGAC, alongside European partners, have created a cutting-edge, open source community for the life sciences.
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!