Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Uncover Bacterial War Tactics

Published: Tuesday, April 08, 2014
Last Updated: Tuesday, April 08, 2014
Bookmark and Share
The discovery paves the way for new drugs to fight bacterial infections.

Scientists from the UK and France have gained the first structural insights into the warfare that takes place when bacteria are starved of nutrients. Bacteria produce antimicrobial lasso peptides, which have a unique knotted structure; when they come face-to-face with receptors at the outer membranes of cells of other bacteria that cause human infections, such as E. coli or Salmonella, these peptides can hijack the receptor and kill the target bacteria.  

To uncover the bacterial war tactics, scientists used structural data collected on the crystallography beamlines at Diamond Light Source, the UK’s national synchrotron science facility, combined with modelling and biochemical experiments. The team brought together scientists from Imperial College London, the Muséum National d’Histoire Naturelle in Paris and the University of Oxford, and their results have just been published in Nature Chemical Biology.

Battle lines are drawn when the E. coli bacteria are starved of iron and seek it out via iron receptors on their outer membrane.  These receptors are important and help bacteria to track down iron, but covert operations come into force as the lasso peptides hijack these receptors for their own purposes and kill the bacteria in the process. Ironically, such clashes between bacteria could actually prove very useful to humans in our fight against bacterial infections.  

Konstantinos Beis, from the Department of Life Sciences at Imperial College London, comments, “Successfully treating infectious diseases is currently a huge challenge as bacteria are so good at shrugging off existing antibiotics by developing resistance to them. The structural studies we carried out at Diamond are very exciting as we have identified a key residue in this particular peptide that is important for the recognition of the E. coli receptor and this detailed knowledge, coupled with the fact it has a very stable lasso structure, leads us to believe the peptide could act as a platform for new drugs against bacterial infection.”

There is growing interest in new approaches to tackling bacterial infections as traditional antibiotics made from purely synthetic compounds prove themselves to be not up to the job in the long term. The European Centre for Disease Prevention and Control estimates that 25,000 patients die each year from infections caused by anti microbial resistant bacteria.

Sylvie Rebuffat, from the Muséum National d’Histoire Naturelle-CNRS in Paris, adds “My team has been working on this particular peptide for over a decade now and, while these are early stage results, they provide the structural information that we have been waiting for to enable us to establish it as a front runner to aid in the design of new medicine to fight bacterial infections.”

The research was funded by the Medical Research Council, the Wellcome Trust and the Biotechnology and Biological Sciences Research Council.







Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Diamond Light Source Announce Launch of ePSIC
Electron Physical Sciences Imaging Centre launch set to boost the UK’s science and technology infrastructure.
Tuesday, September 06, 2016
Do Germs Cause Type 1 Diabetes?
Germs could play a role in the development of type 1 diabetes by triggering the body’s immune system to destroy the cells that produce insulin, new research suggests.
Tuesday, May 17, 2016
Pioneering Brain Cancer Technique Could Lead to Better Prognosis for Patients
4,000th paper published from Diamond research could improve outcomes for brain cancer sufferers.
Friday, December 18, 2015
Solved Structure of S. pneumoniae Enzyme Could Lead to New Antibiotics
Scientists solve structure of a key bacterial enzyme from streptococcus pneumoniae: a major cause of bacterial meningitis, bronchitis, ear infection and pneumonia.
Thursday, December 03, 2015
New UK Facility to Accelerate Drug Discovery
Diamond’s on-site fragment screening facility a major boost for structural biologists.
Thursday, November 26, 2015
Key Cellular Mechanism Involved in Neurodegeneration and Herpes Uncovered
The discovery of a protein complex at the heart of cellular transport networks could have broad implications for disease research.
Saturday, March 28, 2015
Lighting Up A New Path For Novel Synthetic Polio Vaccine
Crystal structures and electron microscopy images are being used to develop a vaccine to target the polio virus.
Monday, February 16, 2015
Diamond Celebrates a Glittering Year of Crystallography
From film premieres to major scientific breakthroughs, Diamond Light Source helped make the International Year of Crystallography a memorable event.
Tuesday, December 23, 2014
Scientists Gain First Glimpse of One of Nature’s Measuring ‘Rulers’
New findings offer potential to outsmart bacterial infections.
Tuesday, December 16, 2014
Scientists Discover Bacteria’s Clever Defence Mechanism
Structure of EzrA protein could help identify new antibiotic targets.
Tuesday, November 18, 2014
Investment in New Capability for Materials Analysis
Johnson Matthey, Oxford University, Diamond Light Source announce the creation a state-of-the-art materials characterisation facility at the Harwell Science and Innovation Campus.
Thursday, August 07, 2014
Novel Crystallography Beamline Takes Delivery of in Vacuum X-Ray Detector
The Diamond Light Source beamline will facilitate challenging research on DNA, RNA, native proteins and other building blocks of life.
Friday, April 04, 2014
‘Big Science’ uncovers another piece in the Alzheimer’s puzzle
Evidence found of the possible cause of brain-cell-damaging toxic iron.
Thursday, March 27, 2014
Year of Glittering Celebrations begins at Diamond Light Source
Activity to showcase 100 years of crystallography.
Tuesday, February 04, 2014
Funding Announced for New Biological Facilities at Diamond Light Source
Landmark silver doughnut-shaped building on the Harwell Campus has been granted £15.6 million for a new imaging centre for biology.
Friday, December 13, 2013
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!