Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Strong Link Between Obesity and 'Carb Breakdown' Gene

Published: Monday, March 31, 2014
Last Updated: Thursday, April 10, 2014
Bookmark and Share
Findings suggest that dietary advice may need to be tailored to individual's digestive system.

Researchers at King’s College London and Imperial College London have discovered that people with fewer copies of a gene coding for a carb-digesting enzyme may be at higher risk of obesity. The findings, published in Nature Genetics, suggest that dietary advice may need to be more tailored to an individual’s digestive system, based on whether they have the genetic predisposition and necessary enzymes to digest different foods.

Salivary amylase plays a significant role in breaking down carbohydrates in the mouth at the start of the digestion process. The new study suggests that people with fewer copies of the AMY1 gene have lower levels of this enzyme and therefore will have more difficulty breaking down carbohydrates than those with more copies.

Previous research has found a genetic link between obesity and food behaviours and appetite, but the new discovery highlights a novel genetic link between metabolism and obesity. It suggests that people’s bodies may react differently to the same type and amount of food, leading to weight gain in some and not in others. The effect of the genetic difference found in the latest study appears much stronger link than any of those found before. 

Researchers first measured gene expression patterns in 149 Swedish families with differences in the levels of obesity and found unusual patterns around two amylase genes (AMY1 and AMY2), which code for salivary and pancreatic amylase. This was suggestive of a variation in copy numbers relating directly to obesity. 

The finding was replicated strongly in 972 twins from TwinsUK, the biggest UK adult twin registry, which found a similar pattern of expression. The researchers then estimated the precise copy numbers of the amylase gene in the DNA of a further 481 Swedish subjects, 1,479 subjects from TwinsUK and 2,137 subjects from the DESIR project. 

The collaborative team found that the number of copies of the AMY1 gene (salivary amylase) was consistently linked to obesity. Further replication in French and Chinese patients with and without obesity showed the same patterns. 

A lower estimated AMY1 copy-number showed a significantly increased risk of obesity in all samples and this translated to an approximate eight-fold difference in the risk of obesity between those subjects with the highest number of copies of the gene and those with the lowest. 

Standard Genome wide mapping methods (GWAS) had missed this strong association as the area is technically hard to map. This variation in copy numbers, also known as ‘copy number variants’ (CNV) has been underestimated as a genetic cause of disease, but the link between CNV in the amylase gene and obesity provides an indication that other major diseases may be influenced by similar mechanisms.  

Professor Tim Spector, Head of the Department of Twin Research and Genetic Epidemiology at King’s and joint lead investigator said: 'These findings are very exciting. While studies to date have mainly found small effect genes that alter eating behaviour, we discovered how the digestive ‘tools’ in your metabolism  vary between people – and the genes coding for these – can have a large influence on your weight. 

'The next step is to find out more about the activity of this digestive enzyme, and whether this might prove a useful biomarker or target for the treatment of obesity. 

'In the future, a simple blood or saliva test might be used to measure levels of key enzymes such as amylase in the body and therefore shape dietary advice for both overweight and underweight people. Treatments are a long way away but this is an important step in realising that all of us digest and metabolise food differently – and we can move away from ‘one-size fits all diets’ to more personalised approaches.'


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Stem Cell Therapy For Inherited Skin Blistering
Study shows promise for using stem-cell based therapy to treat RDEB.
Tuesday, May 26, 2015
Eating Peanut at an Early Age Prevents Peanut Allergy in High-Risk Infants
New evidence shows that the majority of infants at high-risk of developing peanut allergy are protected from peanut allergy at age 5 years if they eat peanut frequently, starting within the first 11 months of life.
Tuesday, February 24, 2015
Epigenetic Study Bolsters Alzheimer's Understanding
The current study found that chemical modifications to DNA within the ANK1 gene are strongly associated with measures of neuropathology in the brain.
Monday, August 18, 2014
Significant Step Towards Blood Test for Alzheimer's
Scientists have identified a set of 10 proteins in the blood which can predict the onset of Alzheimer’s, marking a significant step towards developing a blood test for the disease.
Tuesday, July 08, 2014
Key Genetic Link Between Chronic Pain Conditions Discovered
Research from at King’s College London suggests that some people may be genetically predisposed to suffer from conditions of this type.
Wednesday, May 21, 2014
UK Launches Clinical Research Facility
NIHR/Wellcome King’s facility officially opened on Friday 9th May, by Chief Medical Officer Professor Dame Sally Davies.
Friday, May 16, 2014
Skin Layer Grown in Lab Could Replace Animal Testing
Skin layer grown from human stem cells could replace animals in drug and cosmetics testing.
Monday, April 28, 2014
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Light of Fireflies for Medical Diagnostics
EPFL scientists have exploited the light of fireflies in a new method that detects biological molecules without the need for complex devices and high costs.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!