Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Too Much Protein May Kill Brain Cells As Parkinson’s Progresses

Published: Friday, April 11, 2014
Last Updated: Friday, April 11, 2014
Bookmark and Share
NIH-funded study on key Parkinson’s gene finds a possible new target for monitoring the disease.

Scientists may have discovered how the most common genetic cause of Parkinson’s disease destroys brain cells and devastates many patients worldwide.  The study was partially funded by the National Institutes of Health’s National Institute of Neurological Disorders and Stroke (NINDS); the results may help scientists develop new therapies.

“This may be a major discovery for Parkinson’s disease patients,” said Ted Dawson, M.D., Ph.D., director of the Johns Hopkins University (JHU) Morris K. Udall Center of Excellence for Parkinson’s Disease, Baltimore, MD.  Dr. Dawson and his wife Valina Dawson, Ph.D., director of the JHU Stem Cell and Neurodegeneration Programs at the Institute for Cell Engineering, led the study published in Cell.

The investigators found that mutations in a gene called leucine-rich repeat kinase 2 (LRRK2; pronounced “lark two” or “lurk two”) may increase the rate at which LRRK2 tags ribosomal proteins, which are key components of protein-making machinery inside cells. This could cause the machinery to manufacture too many proteins, leading to cell death.

“For nearly a decade, scientists have been trying to figure out how mutations in LRRK2 cause Parkinson’s disease,” said Margaret Sutherland, Ph.D., a program director at NINDS. “This study represents a clear link between LRRK2 and a pathogenic mechanism linked to Parkinson’s disease.” 

Affecting more than half a million people in the United States, Parkinson’s disease is a degenerative disorder that attacks nerve cells in many parts of the nervous system, most notably in a brain region called the substantia nigra, which releases dopamine, a chemical messenger important for movement. Initially, Parkinson’s disease causes uncontrolled movements; including trembling of the hands, arms, or legs. As the disease gradually worsens, patients lose ability to walk, talk or complete simple tasks.

For the majority of cases of Parkinson’s disease, a cause remains unknown. Mutations in the LRRK2 gene are a leading genetic cause. They have been implicated in as many as 10 percent of inherited forms of the disease and in about 4 percent of patients who have no family history. One study showed that the most common LRRK2 mutation, called G2019S, may be the cause of 30-40 percent of all Parkinson’s cases in people of North African Arabic descent.

LRRK2 is a kinase enzyme, a type of protein found in cells that tags molecules with chemicals called phosphate groups. The process of phosphorylation helps regulate basic nerve cell function and health. Previous studies suggest that disease-causing mutations, like the G2019S mutation, increase the rate at which LRRK2 tags molecules. Identifying the molecules that LRRK2 tags provides clues as to how nerve cells may die during Parkinson’s disease.

In this study, the researchers used LRRK2 as bait to fish out the proteins that it normally tags.  Multiple experiments performed on human kidney cells suggested that LRRK2 tags ribosomal proteins. These proteins combine with other molecules, called ribonucleic acids, to form ribosomes, which are the cell’s protein-making factories.  

Further experiments suggested that disease-causing mutations in LRRK2 increase the rate at which it tags two ribosomal proteins, called s11 and s15. Moreover, brain tissue samples from patients with LRRK2 mutations had greater levels of phosphorylated s15 than seen in controls.

Next, the researchers investigated whether phosphorylation could be linked to cell death, by studying nerve cells derived from rats or from human embryonic stem cells. Genetically engineering the cells to have a LRRK2 mutant gene increased the amount of cell death and phosphorylated s15.  In contrast, the researchers prevented cell death when they engineered the cells to also make a mutant s15 protein that could not be tagged by LRRK2.  

“These results suggest that s15 ribosome protein may play a critical role in the development of Parkinson’s disease,” said Dr. Dawson. 

How might phosphorylation of s15 kill nerve cells? To investigate this, Dr. Dawson and his colleagues performed experiments on fruit flies.  

Previous studies on flies showed that genetically engineering dopamine-releasing nerve cells to overproduce the LRRK2 mutant protein induced nerve cell damage and movement disorders. Dr. Dawson’s team found that the brains of these flies had increased levels of phosphorylated s15 and that engineering the flies so that s15 could not be tagged by LRRK2 prevented cell damage and restored normal movement.  

Interestingly, the brains of the LRRK2 mutant flies also had abnormally high levels of all proteins, suggesting that increased s15 tagging caused ribosomes to make too much protein. Treating the flies with low doses of anisomycin, a drug that blocks protein production, prevented nerve cell damage and restored the flies’ movement even though levels of s15 phosphorylation remained high.

“Our results support the idea that changes in the way cells make proteins might be a common cause of Parkinson’s disease and possibly other neurodegenerative disorders,” said Dr. Dawson.

Dr. Dawson and his colleagues think that blocking the phosphorylation of s15 ribosomal proteins could lead to future therapies as might other strategies which decrease bulk protein synthesis or increase the cells’ ability to cope with increased protein metabolism. They also think that a means to measure s15 phosphorylation could also act as a biomarker of LRRK2 activity in treatment trials of LRRK2 inhibitors. 

This work was supported by grants from the NINDS (NS038377, NS072187), the JPB Foundation, the Maryland Stem Cell Research Fund (2007-MSCRFI-0420-00, 2009-MSCRFII-0125-00, 2013-MSCRFII-0105-00), and the New York Stem Cell Foundation. 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
Wednesday, January 13, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Scientific News
Criminal Justice Alcohol Program Linked to Decreased Mortality
Institute has announced that in the criminal justice alcohol program deaths dropped by 4.2 percent over six years.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Madison Researchers Begin Work on Zika Virus
Work will start with basic questions about Zika virus infection.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!