Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stanford Scientists Discover a Novel Way to Make Ethanol Without Corn or Other Plants

Published: Saturday, April 12, 2014
Last Updated: Saturday, April 12, 2014
Bookmark and Share
Stanford scientists have created a copper-based catalyst that produces large quantities of ethanol from carbon monoxide gas at room temperature.

Stanford University scientists have found a new, highly efficient way to produce liquid ethanol from carbon monoxide gas. This promising discovery could provide an eco-friendly alternative to conventional ethanol production from corn and other crops, say the scientists. Their results are published in the April 9 advanced online edition of the journal Nature.

"We have discovered the first metal catalyst that can produce appreciable amounts of ethanol from carbon monoxide at room temperature and pressure - a notoriously difficult electrochemical reaction," said Matthew Kanan, an assistant professor of chemistry at Stanford and coauthor of the Nature study.

Most ethanol is produced at high-temperature fermentation facilities that chemically convert corn, sugarcane and other plants into liquid fuel. But growing crops for biofuel requires thousands of acres of land and vast quantities of fertilizer and water. In some parts of the United States, it takes more than 800 gallons of water to grow a bushel of corn, which, in turn, yields about 3 gallons of ethanol.

The new technique developed by Kanan and Stanford graduate student Christina Li requires no fermentation and, if scaled up, could help address many of the land- and water-use issues surrounding ethanol production today. "Our study demonstrates the feasibility of making ethanol by electrocatalysis," Kanan said. "But we have a lot more work to do to make a device that is practical."

Novel electrodes

Two years ago, Kanan and Li created a novel electrode made of a material they called oxide-derived copper. They used the term "oxide-derived" because the metallic electrode was produced from copper oxide.

"Conventional copper electrodes consist of individual nanoparticles that just sit on top of each other," Kanan said. "Oxide-derived copper, on the other hand, is made of copper nanocrystals that are all linked together in a continuous network with well-defined grain boundaries. The process of transforming copper oxide into metallic copper creates the network of nanocrystals."

For the Nature study, Kanan and Li built an electrochemical cell – a device consisting of two electrodes placed in water saturated with carbon monoxide gas. When a voltage is applied across the electrodes of a conventional cell, a current flows and water is converted to oxygen gas at one electrode (the anode) and hydrogen gas at the other electrode (the cathode). The challenge was to find a cathode that would reduce carbon monoxide to ethanol instead of reducing water to hydrogen.

"Most materials are incapable of reducing carbon monoxide and exclusively react with water," Kanan said. "Copper is the only exception, but conventional copper is very inefficient."

In the Nature experiment, Kanan and Li used a cathode made of oxide-derived copper. When a small voltage was applied, the results were dramatic.

"The oxide-derived copper produced ethanol and acetate with 57 percent faradaic efficiency," Kanan said. "That means 57 percent of the electric current went into producing these two compounds from carbon monoxide. We're excited because this represents a more than 10-fold increase in efficiency over conventional copper catalysts. Our models suggest that the nanocrystalline network in the oxide-derived copper was critical for achieving these results."

Carbon neutral

The Stanford team has begun looking for ways to create other fuels and improve the overall efficiency of the process. "In this experiment, ethanol was the major product," Kanan said. "Propanol would actually be a higher energy-density fuel than ethanol, but right now there is no efficient way to produce it."

In the experiment, Kanan and Li found that a slightly altered oxide-derived copper catalyst produced propanol with 10 percent efficiency. The team is working to improve the yield for propanol by further tuning the catalyst's structure.

Ultimately, Kanan would like to see a scaled-up version of the catalytic cell powered by electricity from the sun, wind or other renewable resource.

For the process to be carbon neutral, scientists will have to find a new way to make carbon monoxide from renewable energy instead of fossil fuel, the primary source today. Kanan envisions taking carbon dioxide (CO2) from the atmosphere to produce carbon monoxide, which, in turn, would be fed to a copper catalyst to make liquid fuel. The CO2 that is released into the atmosphere during fuel combustion would be re-used to make more carbon monoxide and more fuel - a closed-loop, emissions-free process.

"Technology already exists for converting CO2 to carbon monoxide, but the missing piece was the efficient conversion of carbon monoxide to a useful fuel that's liquid, easy to store and nontoxic," Kanan said. "Prior to our study, there was a sense that no catalyst could efficiently reduce carbon monoxide to a liquid. We have a solution to this problem that's made of copper, which is cheap and abundant. We hope our results inspire other people to work on our system or develop a new catalyst that converts carbon monoxide to fuel."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Friday, July 31, 2015
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
Thursday, July 30, 2015
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Monday, July 27, 2015
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Monday, July 27, 2015
Tiny Spheres Of Human Cells Mimic The Brain
Researchers have figured out how to create spheres of neuronal cells resembling the cerebral cortex, making functional human brain tissue available for the first time to study neuropsychiatric diseases such as autism and schizophrenia.
Wednesday, May 27, 2015
Genetic Signature Enables Early, Accurate Sepsis Diagnosis
Systemic inflammation after injuries or surgery can dramatically alter the activity of thousands of genes, but a new study shows that changes in just 11 of them are enough to detect the presence or absence of accompanying infection.
Monday, May 18, 2015
Existing Drug May Treat Deadliest Childhood Brain Tumor
For the first time, scientists have identified an existing drug that slows the growth of the deadliest childhood brain tumor.
Friday, May 08, 2015
Foreign Antibodies Mobilize Immune System to Fight Cancer
A mouse’s T cells can be primed to attack and eliminate a malignant tumor by injecting antibodies from another mouse with resistance to the tumor, as well as by activating certain signaling cells, a study has found.
Thursday, May 07, 2015
Solving The Mystery Of The Dancing Droplets
Years of research satisfy a graduate student's curiosity about the molecular minuet he observed among drops of ordinary food coloring.
Friday, March 13, 2015
A Protein's Novel Role In Several Types Of Cancers Discovered
Stanford ChEM-H scientists are helping to develop a novel cancer therapy based on a new finding of a protein that inadvertently promotes cancer growth.
Friday, February 27, 2015
Tiny Fish Makes Big Splash In Aging Research At Stanford
Researchers disabled aging-associated genes in the short-lived African killifish, including one for an enzyme called telomerase, whose absence caused humanlike disease in the animal.
Friday, February 13, 2015
Telomere Extension Turns Back Aging Clock In Cultured Cells
Researchers delivered a modified RNA that encodes a telomere-extending protein to cultured human cells. Cell proliferation capacity was dramatically increased, yielding large numbers of cells for study.
Tuesday, January 27, 2015
Stanford Chemists Take Step Toward Solving Mystery of How Enzymes Work
Steven Boxer and his students have found that the electrostatic field within an enzyme accounts for the lion's share of its success.
Wednesday, December 24, 2014
Stem Cells Faulty In Duchenne Muscular Dystrophy
In a mouse model of Duchenne muscular dystrophy, muscle stem cells express connective-tissue genes associated with fibrosis and muscle weakness, according to a new study.
Thursday, December 18, 2014
Big Data Helps Pinpoint Possible New Stent Drug
Replacing the current drug used to coat artery-opening stents with a drug more targeted to the actual cause of stent disease could reduce blood clots and heart attacks.
Wednesday, November 19, 2014
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
How Cholesterol Leads to Clogged Arteries
A new study shows that when immune cells called neutrophils are exposed to cholesterol crystals, they release large extracellular web-like structures that trigger the production of inflammatory molecules linked to artherosclerosis.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Researchers Discover New Type of Mycovirus
Virus infects the fungus Aspergillus fumigatus, which can cause the human disease aspergillosis.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!