Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Targeting Cancer with a Triple Threat

Published: Tuesday, April 15, 2014
Last Updated: Tuesday, April 15, 2014
Bookmark and Share
MIT chemists design nanoparticles that can deliver three cancer drugs at a time.

Delivering chemotherapy drugs in nanoparticle form could help reduce side effects by targeting the drugs directly to the tumors. In recent years, scientists have developed nanoparticles that deliver one or two chemotherapy drugs, but it has been difficult to design particles that can carry any more than that in a precise ratio.

Now MIT chemists have devised a new way to build such nanoparticles, making it much easier to include three or more different drugs. In a paper published in the Journal of the American Chemical Society, the researchers showed that they could load their particles with three drugs commonly used to treat ovarian cancer.

“We think it’s the first example of a nanoparticle that carries a precise ratio of three drugs and can release those drugs in response to three distinct triggering mechanisms,” says Jeremiah Johnson, an assistant professor of chemistry at MIT and the senior author of the new paper.

Such particles could be designed to carry even more drugs, allowing researchers to develop new treatment regimens that could better kill cancer cells while avoiding the side effects of traditional chemotherapy. In the JACS paper, Johnson and colleagues demonstrated that the triple-threat nanoparticles could kill ovarian cancer cells more effectively than particles carrying only one or two drugs, and they have begun testing the particles against tumors in animals.

Longyan Liao, a postdoc in Johnson’s lab, is the paper’s lead author.

Putting the pieces together

Johnson’s new approach overcomes the inherent limitations of the two methods most often used to produce drug-delivering nanoparticles: encapsulating small drug molecules inside the particles or chemically attaching them to the particle. With both of these techniques, the reactions required to assemble the particles become increasingly difficult with each new drug that is added.

Combining these two approaches — encapsulating one drug inside a particle and attaching a different one to the surface — has had some success, but is still limited to two drugs.

Johnson set out to create a new type of particle that would overcome those constraints, enabling the loading of any number of different drugs. Instead of building the particle and then attaching drug molecules, he created building blocks that already include the drug. These building blocks can be joined together in a very specific structure, and the researchers can precisely control how much of each drug is included.

Each building block consists of three components: the drug molecule, a linking unit that can connect to other blocks, and a chain of polyethylene glycol (PEG), which helps protect the particle from being broken down in the body. Hundreds of these blocks can be linked using an approach Johnson developed, called “brush first polymerization.”

“This is a new way to build the particles from the beginning,” Johnson says. “If I want a particle with five drugs, I just take the five building blocks I want and have those assemble into a particle. In principle, there’s no limitation on how many drugs you can add, and the ratio of drugs carried by the particles just depends on how they are mixed together in the beginning.”

Varying combinations

For this paper, the researchers created particles that carry the drugs cisplatin, doxorubicin, and camptothecin, which are often used alone or in combination to treat ovarian cancer.

Each particle carries the three drugs in a specific ratio that matches the maximum tolerated dose of each drug, and each drug has its own release mechanism. Cisplatin is freed as soon as the particle enters a cell, as the bonds holding it to the particle break down on exposure to glutathione, an antioxidant present in cells. Camptothecin is also released quickly when it encounters cellular enzymes called esterases.

The third drug, doxorubicin, was designed so that it would be released only when ultraviolet light shines on the particle. Once all three drugs are released, all that is left behind is PEG, which is easily biodegradable.

Working with researchers in the lab of Paula Hammond, the David H. Koch Professor of Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research, the team tested the particles against ovarian cancer cells grown in the lab. Particles carrying all three drugs killed the cancer cells at a higher rate than those that delivered only one or two drugs.

Johnson’s lab is now working on particles that carry four drugs, and the researchers are also planning to tag the particles with molecules that will allow them to home to tumor cells by interacting with proteins found on the cell surfaces.

Johnson also envisions that the ability to reliably produce large quantities of multidrug-carrying nanoparticles will enable large-scale testing of possible new cancer treatments. “It’s important to be able to rapidly and efficiently make particles with different ratios of multiple drugs, so that you can test them for their activity,” he says. “We can’t just make one particle, we need to be able to make different ratios, which our method can easily do.”

Other authors of the paper are graduate students Jenny Liu and Stephen Morton, and postdocs Erik Dreaden and Kevin Shopsowitz.

The research was funded by the MIT Research Support Committee, the Department of Defense Ovarian Cancer Research Program Teal Innovator Award, the National Institutes of Health, the National Sciences and Engineering Research Council, and the Koch Institute Support Grant from the National Cancer Institute.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
New System for Detecting Explosives
Spectroscopic system with chip-scale lasers cuts detection time from minutes to microseconds.
Wednesday, June 01, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!