Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Linked to Excess Male Hormones in Female Infertility Disorder

Published: Thursday, April 17, 2014
Last Updated: Thursday, April 17, 2014
Bookmark and Share
Discovery by NIH-supported researchers may lead to diagnostic test, treatment.

A variant in a gene active in cells of the ovary may lead to the overproduction of androgens - male hormones similar to testosterone - occurring in women with polycystic ovary syndrome (PCOS) (http://www.nichd.nih.gov/health/topics/PCOS/Pages/default.aspx), according to scientists funded by the National Institutes of Health. The discovery may provide information to develop a test to diagnose women at risk for PCOS and also for the development of a treatment for the condition.

In addition to high levels of androgens, symptoms of PCOS include irregular menstrual cycles, infertility, and insulin resistance (difficulty using insulin.) The condition affects approximately 5 to 7 percent of women of reproductive age and increases the risk for heart disease, high blood pressure and type 2 diabetes. In PCOS, higher levels of androgens may also cause excess facial and body hair, as well as severe acne.

"PCOS is a major cause of female infertility and is associated with other serious health problems," said Louis V. De Paolo, chief of the Fertility and Infertility Research Branch of NIH's Eunice Kennedy Shriver National Institute of Child Health and Human Development, which funded the study. "In identifying this gene, the study authors have uncovered a promising new lead in the long search for more effective ways to diagnose and treat the condition, and perhaps, to one day prevent it from even occurring."

The study was published online in the Proceedings of the National Academy of Sciences. The study's primary author was Jan M. McAllister, Ph.D, professor of pathology, obstetrics and gynecology, and cellular and molecular physiology in the Penn State College of Medicine, Hershey, Pa.

The researchers narrowed their search to the gene called DENND1A, which contains the information needed to make a protein. This protein is made in theca cells, which line the inner surface of ovarian follicles, the temporary, sphere-like structures which ultimately break open and give rise to the egg each month.

In women with PCOS, the follicles fail to mature normally. Instead of rupturing during the monthly cycle to release the egg, the follicles accumulate and form numerous cyst-like structures. Previous studies have shown that in PCOS, theca cells are the source of the high levels of androgens found in women with the condition.

PCOS appears to run in families, but no genes have been definitively linked to the disorder. Researchers believe that PCOS probably results from the interaction of several genes, and perhaps to interactions between certain genes and the environment.

Previously, researchers conducting genome-wide scans (searches of all of a person's genes) of women in China identified several candidate genes in locations on chromosomes that were associated with the disease. One of these locations harbored the gene for DENND1A. Researchers conducting genome-wide scans of people of Asian and European descent also confirmed the gene's association with PCOS.

For the current study, Dr. McAllister and her colleagues grew theca cells from women with PCOS in laboratory dishes. Compared to theca cells from women without PCOS, theca cells taken from women with PCOS produced high levels of a variant form of DENND1A, DENNDA1A.V2. V2 indicates variant 2, to distinguish it from the more commonly seen form of the protein, known as DENND1A.V1.

The researchers next conducted a battery of experiments on the cells to determine what role DENND1A.V2 might play in PCOS. They began by manipulating the theca cells from women who did not have PCOS to produce high levels of DENND1A.V2. The theca cells, which previously functioned normally, began producing elevated levels of androgens. Similarly, when the researchers blocked the function of DENND1A.V2 in theca cells from women with PCOS, androgen levels in those cells dropped sharply, as did to the activity of other genes that make androgen and the levels of messenger RNA needed to produce androgens. The study authors noted that DENND1A.V2 is also found in other cells that make androgens, including cells in the testes, as well as in a type of cancer cell occurring in the adrenal glands.

The cells from women with PCOS also contained higher levels of the messenger RNA for DENND1A.V2. Messenger RNA converts the information contained within DNA into a protein.

In addition, the researchers found that the messenger RNA for DENND1A.V2 protein was higher in urine samples from PCOS patients than in urine samples of women in the control group.

"PCOS is often difficult to diagnose, especially in adolescents," Dr. McAllister said. "The fact that DENND1A.V2 is present in urine opens up the possibility that it might provide the basis for a test to screen for PCOS."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Thursday, May 26, 2016
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
Wednesday, May 25, 2016
Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Friday, May 20, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!