Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Protecting Olive Oil from Counterfeiters

Published: Friday, April 25, 2014
Last Updated: Friday, April 25, 2014
Bookmark and Share
Using magnetic DNA particles, ETH Zurich researchers have shown how olive oil can be tagged to prevent counterfeiting.

Who guarantees that expensive olive oil isn't counterfeit or adulterated? An invisible label, developed by ETH researchers, could perform this task. The tag consists of tiny magnetic DNA particles encapsulated in a silica casing and mixed with the oil.

Just a few grams of the new substance are enough to tag the entire olive oil production of Italy. If counterfeiting were suspected, the particles added at the place of origin could be extracted from the oil and analysed, enabling a definitive identification of the producer. “The method is equivalent to a label that cannot be removed,” says Robert Grass, lecturer in the Department of Chemistry and Applied Biosciences at ETH Zurich.

The worldwide need for anti-counterfeiting labels for food is substantial. In a joint operation in December 2013 and January 2014, Interpol and Europol confiscated more than 1,200 tonnes of counterfeit or substandard food and almost 430,000 litres of counterfeit beverages. The illegal trade is run by organised criminal groups that generate millions in profits, say the authorities. The confiscated goods also included more than 131,000 litres of oil and vinegar.

A forgery-proof label should not only be invisible but also safe, robust, cheap and easy to detect. To fulfil these criteria ETH researchers used nanotechnology and nature’s information storehouse, DNA. A piece of artificial genetic material is the heart of the mini-label. “With DNA, there are millions of options that can be used as codes,” says Grass. Moreover, the material has an extremely low detection limit, so tiny amounts are sufficient for labelling purposes.

Synthetic fossil
However, DNA also has some disadvantages. If the material is used as an information carrier outside a living organism, it cannot repair itself and is susceptible to light, temperature fluctuations and chemicals. Thus, the researchers used a silica coating to protect the DNA, creating a kind of synthetic fossil. The casing represents a physical barrier that protects the DNA against chemical attacks and completely isolates it from the external environment – a situation that mimics that of natural fossils, write the researchers in their paper, which has been published in the journal ACS Nano. To ensure that the particles can be fished out of the oil as quickly and simply as possible, Grass and his team employed another trick: they magnetised the tag by attaching iron oxide nanoparticles.

Experiments in the lab showed that the tiny tags dispersed well in the oil and did not result in any visual changes. They also remained stable when heated and weathered an ageing trial unscathed. The magnetic iron oxide, meanwhile, made it easy to extract the particles from the oil. The DNA was recovered using a fluoride-based solution and analysed by PCR, a standard method that can be carried out today by any medical lab at minimal expense. “Unbelievably small quantities of particles down to a millionth of a gram per litre and a tiny volume of a thousandth of a litre were enough to carry out the authenticity tests for the oil products,” write the researchers. The method also made it possible to detect adulteration: if the concentration of nanoparticles does not match the original value, other oil – presumably substandard – must have been added. The cost of label manufacture should be approximately 0.02 cents per litre.

Labels for petrol and Bergamot essential oil

Petrol could also be tagged using this method and the technology could be used in the cosmetics industry as well. In trials the researchers also successfully tagged expensive Bergamot essential oil, which is used as a raw material in perfumes. Nevertheless, Grass sees the greatest potential for the use of invisible labels in the food industry. But will consumers buy expensive ‘extra-virgin’ olive oil when synthetic DNA nanoparticles are floating around in it? “These are things that we already ingest today,” says Grass. Silica particles are present in ketchup and orange juice, among other products, and iron oxide is permitted as a food additive E172.

To promote acceptance, natural genetic material could be used in place of synthetic DNA; for instance, from exotic tomatoes or pineapples, of which there are a great variety – but also from any other fruit or vegetable that is a part of our diet. Of course, the new technology must yield benefits that far outweigh any risks, says Grass. He concedes that as the inventor of the method, he might not be entirely impartial. “But I need to know where food comes from and how pure it is.” In the case of adulterated goods, there is no way of knowing what’s inside. “So I prefer to know which particles have been intentionally added.”

Literature reference

Michaela Puddu, Daniela Paunescu, Wendelin J. Stark, and Robert N. Grass: Magnetically Recoverable, Thermostable, Hydrophobic DNA/Silica Encapsulates and Their Application as Invisible Oil Tags. ACS Nano, 8 (3), 1677-1685. DOI: 10.1021/nn4063853 

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bumblebee Genome Mapped
A research collaboration spearheaded by ETH Zurich has shed light on the genome of two commercially important species of bumblebees. The findings provide unexpected insights into the ecology and evolution of bumblebees and honeybees.
Thursday, April 30, 2015
Controlling Genes with Your Thoughts
Researchers develop the first gene network to be operated via brainwaves.
Tuesday, November 11, 2014
New Defence Mechanism Against Viruses Discovered
Mechanism may represent one of the oldest defence mechanisms against viruses in evolutionary history.
Friday, September 12, 2014
New African Cassava Resists Devastating Viruses
Plant scientists at ETH Zurich have developed a new African cassava preferred by consumers and farmers that is resistant to the two major virus diseases in Africa. Now they want to test the resistant cassava in Africa.
Tuesday, October 02, 2012
Swiss researchers develop rice with increased (six-fold!) iron content
Scientists at ETH Zurich have developed rice plants that contain six times more iron in polished rice kernels.
Thursday, August 20, 2009
Scientific News
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos