Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scripps Researchers Find New Point of Attack on HIV for Vaccine Development

Published: Friday, April 25, 2014
Last Updated: Friday, April 25, 2014
Bookmark and Share
The newly identified site can be attacked by human antibodies in a way that neutralizes the infectivity of a wide variety of HIV strains.

A team led by scientists at The Scripps Research Institute (TSRI) working with the International AIDS Vaccine Initiative (IAVI) has discovered a new vulnerable site on the HIV virus. 

“HIV has very few known sites of vulnerability, but in this work we’ve described a new one, and we expect it will be useful in developing a vaccine,” said Dennis R. Burton, professor in TSRI’s Department of Immunology and Microbial Science and scientific director of the IAVI Neutralizing Antibody Center (NAC) and of the National Institutes of Health’s Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) on TSRI’s La Jolla campus.

“It’s very exciting that we’re still finding new vulnerable sites on this virus,” said Ian A. Wilson, Hansen Professor of Structural Biology, chair of the Department of Integrative Structural and Computational Biology and member of the Skaggs Institute for Chemical Biology at TSRI and member of the NAC and CHAVI-ID.

The findings were reported in two papers—one led by Burton and the second led by TSRI Assistant Professor Andrew B. Ward, also a member of NAC and CHAVI-ID, and Wilson—appearing in the May issue of the journalImmunity.

The discovery is part of a large, IAVI- and NIH-sponsored effort to develop an effective vaccine against HIV. Such a vaccine would work by eliciting a strong and long-lasting immune response against vulnerable conserved sites on the virus—sites that don’t vary much from strain to strain, and that, when grabbed by an antibody, leave the virus unable to infect cells.

Cloaked by Shields

HIV generally conceals these vulnerable conserved sites under a dense layer of difficult-to-grasp sugars and fast-mutating parts of the virus surface. Much of the antibody response to infection is directed against the fast-mutating parts and thus is only transiently effective.

Prior to the new findings, scientists had been able to identify only a few different sets of “broadly neutralizing” antibodies, capable of reaching four conserved vulnerable sites on the virus. All these sites are on HIV’s only exposed surface antigen, the flower-like envelope (Env) protein (gp140) that sprouts from the viral membrane and is designed to grab and penetrate host cells.

The identification of the new vulnerable site on the virus began with tests of blood samples from IAVI Protocol G, in which IAVI and its NAC partnered with clinical research centers in Africa, India, Thailand, Australia, the United Kingdom and the United States to collect blood samples from more than 1,800 healthy, HIV-positive volunteers to look for rare, broadly neutralizing antibodies. The serum from a small set of the samples indeed turned out to block the infectivity, in test cells, of a wide range of HIV isolates, suggesting the presence of broadly neutralizing antibodies. In 2009, scientists from IAVI, TSRI and Theraclone Sciences succeeded in isolating and characterizing the first new broadly neutralizing antibodies to HIV seen in a decade.

Emilia Falkowska, a research associate in the Burton laboratory who was a key author of the first paper, and colleagues soon found a set of eight closely related antibodies that accounted for most of one of the sample’s HIV neutralizing activity. The scientists determined that the two broadest neutralizers among these antibodies, PGT151 and PGT152, could block the infectivity of about two-thirds of a large panel of HIV strains found in patients worldwide.

Curiously, despite their broad neutralizing ability, these antibodies did not bind to any previously described vulnerable sites, or epitopes, on Env—and indeed failed to bind tightly anywhere on purified copies of gp120 or gp41, the two protein subunits of Env. Most previously described broadly neutralizing HIV antibodies bind to one or the other Env subunit. The researchers eventually determined, however, that PGT151 and PGT152 attach not just to gp120 or gp41 but to bits of both.

In fact, gp120 and gp41 assemble into an Env structure not as one gp120-gp41 combination but as three intertwined ones—a trimer, in biologists’ parlance. PGT151 and 152 (which are nearly identical) turned out to have a binding site that occurs only on this mature and properly assembled Env trimer structure.

“These are the first HIV neutralizing antibodies we’ve found that unequivocally distinguish mature Env trimer from all other forms of Env,” said Falkowska. “That’s important because this is the form of Env that the virus uses to infect cells.”

Structure Revealed

The second of the two new studies was an initial structural analysis of the new vulnerable epitope.

Using an integrative approach that combined electron microscopy on the Env trimer complex with PGT151 (led by the Ward lab) with the structure of the PGT151 Fab by x-ray crystallography (led by the Wilson lab), the scientists were able to visualize the location of the PGT151-series binding site on the Env trimer—which includes a spot on one gp41 protein with two associated sugars (glycans), a patch on the gp120 protein and even a piece of the adjacent gp41 within the trimer structure—“a very complex epitope,” said Claudia Blattner, a research associate in the Wilson laboratory at TSRI and member of the IAVI Neutralizing Antibody Center who, along with graduate student Jeong Hyun Lee, was a first author of the second paper.

A surprise finding was that the PGT151-series antibodies bind to the Env trimer in a way that stabilizes its otherwise fragile structure. “Typically when you try to purify the native Env trimer, it falls apart, which has made it very hard to study,” said Ward. “It was a key breakthrough to find an antibody that stabilizes it.”

Although the PGT151 site is valuable in itself as an attack point for an HIV vaccine, its discovery also hints at the existence of other similar complex and vulnerable epitopes on HIV.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Wednesday, May 25, 2016
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Tuesday, May 24, 2016
Making Genetic Data Easier to Search
Scripps team streamlines biomedical research by making genetic data easier to search.
Tuesday, May 17, 2016
Potent Therapeutic 'Warheads' That Target Cancer Cells
Scripps scientists have developed molecular “warheads” that could be used to treat cancer.
Tuesday, May 17, 2016
Predicting Cell Changes that Affect Breast Cancer Growth
Researchers find small structural changes in a key breast cancer receptor that can predict cancer growth.
Tuesday, May 03, 2016
Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Wednesday, April 27, 2016
First ‘Teenage’ HIV-Neutralizing Antibody Discovered
Scientists have studied the evolution of anti-HIV antibodies, with hopes of creating a vaccine to prevent AIDS.
Wednesday, April 06, 2016
Discovering 'Outlier' Enzymes
Researchers at TSRI and Salk Institute have discovered 'Outlier' enzymes that could offer new targets to treat type 2 diabetes and inflammatory disorders.
Saturday, April 02, 2016
Encouraging Foundation for Upcoming AIDS Vaccine Clinical Trial
Engineered vaccine protein binds key immune cells that exist in nearly everyone.
Tuesday, March 29, 2016
New Approach to Curbing Cancer Cell Growth
Using a new approach, scientists at The Scripps Research Institute (TSRI) and collaborating institutions have discovered a novel drug candidate that could be used to treat certain types of breast cancer, lung cancer and melanoma.
Monday, March 14, 2016
Vaccine Against Dangerous Designer Opioids
With use of synthetic opioid "designer drugs" on the rise, scientists from The Scripps Research Institute (TSRI) have a new strategy to curb addiction and even prevent fatal overdoses.
Thursday, February 18, 2016
Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Friday, October 02, 2015
Key Morphine Regulator Identified
The findings could lead to less addictive pain medications.
Thursday, September 24, 2015
$6 Million Awarded to Develop Alternative HIV/AIDS Vaccine
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded up to nearly $6 million from the Bill & Melinda Gates Foundation to develop a revolutionary HIV/AIDS alternative vaccine that has demonstrated great potential in animal models.
Thursday, September 24, 2015
Novel Role of Mitochondria in Immune Function Identified
Scientists at The Scripps Research Institute (TSRI) have discovered a new role for an enzyme involved in cell death.
Monday, September 21, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Air Pollution Linked to Heart Disease
10-year project revealed air pollutants accelerate plaque build-up in arteries to the heart.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Following Tricky Triclosan
Antibacterial product flows through streams, crops.
Vitamin A May Help Improve Pancreatic Cancer Chemotherapy
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL).
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!