Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

How to Count Methane Emissions

Published: Tuesday, April 29, 2014
Last Updated: Tuesday, April 29, 2014
Bookmark and Share
Study provides new metric for comparing the greenhouse gases methane and carbon dioxide.

In formulating policies to address greenhouse gas emissions, or evaluating the potential impact of different energy technologies on global climate change, one of the thorniest issues is how to account for the very distinctive characteristics of various different gases.

For example, methane is a potent greenhouse gas, as well as a significant byproduct of using natural gas - advocated by many as a “bridge” to a lower-emissions future. But a direct comparison between methane and carbon dioxide, the most abundant greenhouse gas emitted by human activities, is complicated: While the standard figure used for emissions trading and technology evaluation says that, gram for gram, methane is about 30 times as potent a greenhouse gas as CO2, scientists say that’s an oversimplification.

As reported in a paper published in the journal Nature Climate Change, authored by MIT assistant professor of engineering systems Jessika Trancik and doctoral student Morgan Edwards, this conversion factor (called the global warming potential, or GWP) may significantly misvalue methane. Getting this conversion factor right is challenging because methane’s initial impact is much greater than that of CO2 - by about 100 times.

But methane only stays in the atmosphere for a matter of decades, while CO2 sticks around for centuries. The result: After six or seven decades, the impact of the two gases is about equal, and from then on methane’s relative role continues to decline.

Static measures, such as the GWP, give a false sense of the gases’ impacts, and could lead to unintended climate outcomes when used as the basis for policies and planning, Trancik says. Instead, she and Edwards argue for the use of what they call “dynamic metrics,” which lead to a conversion factor that changes over time in a predictable way.

“With CO2, one cares about the cumulative emissions,” Trancik says. “But with methane, the timing of emissions matters.” The issue for regulators and planners, she says, is: “How can we take emissions timing into account, in a metric equation that is simple and predictive enough to be used?”

The authors develop a kind of metric that incorporates limited information about the future - an intended “stabilization level” for the Earth’s climate - but doesn’t require knowledge about the exact climate scenario to be followed. The researchers develop two such metrics, the instantaneous climate impact (ICI) and the cumulative climate impact (CCI); the latter is more conservative in earlier years.

The paper shows that the choice of how to quantify the effect of methane versus CO2 can have a bigger effect on the ultimate climate outcomes than uncertainties in how much leakage of methane occurs in the natural gas production system, which has recently drawn much more attention from researchers and policymakers. For this reason it is important to choose an accurate metric, and understand its properties.

“Any equivalency metric is going to be imperfect,” Trancik says, “which is why it is important to test metrics and understand their properties.” But using a measure that accounts for significant changes to the climate over time should allow for more realistic assessments of the effects of policy decisions - such as in setting environmental regulations, or deciding where to focus research investment.

While it is generally assumed that the climate impact of natural gas to produce electricity is approximately half that of coal, she says, that comparison depends on timing: The figure is true today, but within three decades, compared with coal-fired power plants, the advantage of natural gas is roughly halved under common stabilization goals. Similarly, compressed natural gas as a transportation fuel actually ends up being worse than gasoline within a couple of decades, the authors report.

In the case of natural gas, it’s not the emissions from the plants burning the gas that produce methane; rather, it is the leakage of methane - the main component of natural gas - during drilling and transportation of the fuel. So there is potential to reduce the impact of natural gas by investing in better control of such leakage, Trancik says.

More accurate comparisons of the effects of methane and CO2 can also be important when evaluating technologies that produce emissions of more than one type of gas. For example, the study found that algae-based biofuels that incorporate a biodigester may leak enough methane to outweigh the emissions benefits over corn ethanol - a consideration that may weigh on decisions about which technology designs should be invested in and how they should be regulated, she says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Method for Analyzing Crystal Structure
Exotic materials called photonic crystals reveal their internal characteristics with new method.
Monday, November 28, 2016
Biomarker Guiding Cancer Therapy
Biologists link levels of Mena protein to breast cancer cells’ sensitivity to chemotherapy.
Tuesday, November 22, 2016
Capsule Achieves Long-Term Drug Delivery
Novel drug delivery method could aid in elimination of malaria and treatment of many other diseases.
Monday, November 21, 2016
Synthetic Cells Isolate Genetic Circuits
Encapsulating molecular components in artificial membranes offers more flexibility in designing circuits.
Tuesday, November 15, 2016
Turning Greenhouse Gas into Gasoline
New catalyst provides design principles for producing fuels from carbon dioxide emissions.
Tuesday, November 15, 2016
New Approach Against Salmonella
Researchers have developed a strategy to immunize against microbes that invade the gastrointestinal tract, including Salmonella.
Tuesday, November 08, 2016
Laser Particles Could Provide Sharper Tissue Images
New imaging technique stimulates particles to emit laser light, could create higher-resolution images.
Tuesday, November 08, 2016
Engineers Design New Weapon Against Bacteria
Researchers have successfully engineered antimicrobial peptides that can kill bacterial strains resistant to existing antibiotics.
Thursday, November 03, 2016
Predicting Cancer Cells’ Response to Chemotherapy
Researcher develop method for testing cell ability to perform different types of DNA repair, which can reveal tumors’ sensitivity to drugs.
Wednesday, November 02, 2016
Nanobionic Spinach Detects Dangerous Chemicals
Scientists have changed spinach plants into biosensors that can detect harful chemicals and wirelessly relay the information.
Tuesday, November 01, 2016
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
Friday, October 28, 2016
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Tuesday, October 25, 2016
MRIs for Fetal Health
Algorithm could help analyze fetal scans to determine whether interventions are warranted.
Monday, October 24, 2016
Mapping Serotonin in the Living Brain
Imaging technique that creates a 3D video of serotonin transport could aid antidepressant development.
Monday, October 24, 2016
Achieving “Green” Desalination
Workshop explores ways to reduce or eliminate the carbon footprint of seawater desalination plants.
Thursday, October 20, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!