Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

How to Count Methane Emissions

Published: Tuesday, April 29, 2014
Last Updated: Tuesday, April 29, 2014
Bookmark and Share
Study provides new metric for comparing the greenhouse gases methane and carbon dioxide.

In formulating policies to address greenhouse gas emissions, or evaluating the potential impact of different energy technologies on global climate change, one of the thorniest issues is how to account for the very distinctive characteristics of various different gases.

For example, methane is a potent greenhouse gas, as well as a significant byproduct of using natural gas - advocated by many as a “bridge” to a lower-emissions future. But a direct comparison between methane and carbon dioxide, the most abundant greenhouse gas emitted by human activities, is complicated: While the standard figure used for emissions trading and technology evaluation says that, gram for gram, methane is about 30 times as potent a greenhouse gas as CO2, scientists say that’s an oversimplification.

As reported in a paper published in the journal Nature Climate Change, authored by MIT assistant professor of engineering systems Jessika Trancik and doctoral student Morgan Edwards, this conversion factor (called the global warming potential, or GWP) may significantly misvalue methane. Getting this conversion factor right is challenging because methane’s initial impact is much greater than that of CO2 - by about 100 times.

But methane only stays in the atmosphere for a matter of decades, while CO2 sticks around for centuries. The result: After six or seven decades, the impact of the two gases is about equal, and from then on methane’s relative role continues to decline.

Static measures, such as the GWP, give a false sense of the gases’ impacts, and could lead to unintended climate outcomes when used as the basis for policies and planning, Trancik says. Instead, she and Edwards argue for the use of what they call “dynamic metrics,” which lead to a conversion factor that changes over time in a predictable way.

“With CO2, one cares about the cumulative emissions,” Trancik says. “But with methane, the timing of emissions matters.” The issue for regulators and planners, she says, is: “How can we take emissions timing into account, in a metric equation that is simple and predictive enough to be used?”

The authors develop a kind of metric that incorporates limited information about the future - an intended “stabilization level” for the Earth’s climate - but doesn’t require knowledge about the exact climate scenario to be followed. The researchers develop two such metrics, the instantaneous climate impact (ICI) and the cumulative climate impact (CCI); the latter is more conservative in earlier years.

The paper shows that the choice of how to quantify the effect of methane versus CO2 can have a bigger effect on the ultimate climate outcomes than uncertainties in how much leakage of methane occurs in the natural gas production system, which has recently drawn much more attention from researchers and policymakers. For this reason it is important to choose an accurate metric, and understand its properties.

“Any equivalency metric is going to be imperfect,” Trancik says, “which is why it is important to test metrics and understand their properties.” But using a measure that accounts for significant changes to the climate over time should allow for more realistic assessments of the effects of policy decisions - such as in setting environmental regulations, or deciding where to focus research investment.

While it is generally assumed that the climate impact of natural gas to produce electricity is approximately half that of coal, she says, that comparison depends on timing: The figure is true today, but within three decades, compared with coal-fired power plants, the advantage of natural gas is roughly halved under common stabilization goals. Similarly, compressed natural gas as a transportation fuel actually ends up being worse than gasoline within a couple of decades, the authors report.

In the case of natural gas, it’s not the emissions from the plants burning the gas that produce methane; rather, it is the leakage of methane - the main component of natural gas - during drilling and transportation of the fuel. So there is potential to reduce the impact of natural gas by investing in better control of such leakage, Trancik says.

More accurate comparisons of the effects of methane and CO2 can also be important when evaluating technologies that produce emissions of more than one type of gas. For example, the study found that algae-based biofuels that incorporate a biodigester may leak enough methane to outweigh the emissions benefits over corn ethanol - a consideration that may weigh on decisions about which technology designs should be invested in and how they should be regulated, she says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
New System for Detecting Explosives
Spectroscopic system with chip-scale lasers cuts detection time from minutes to microseconds.
Wednesday, June 01, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Core-Shell Columns in HPLC: Food Analysis Applications
Explore the most recent applications of core-shell columns in food analysis.
Review of the Analysis of Haemoglobin A1c for Diabetes Diagnostics
This paper aims to clarify methods, units, quality requirements, reference and cutoff limits for hemoglobin A1c (HbA1c) and ratio of blood glucose/HbA1c on the basis of the results from Finnish quality control surveys by comparing them to the literature.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Vaccine Strategy Targets Multiple Influenza Viruses
Scientists have identified vaccine-induced antibodies that can neutralize strains of influenza virus that infect humans.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!