Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Genetic Material Hitchhiking in Our Cells May Shape Physical Traits

Published: Wednesday, May 14, 2014
Last Updated: Wednesday, May 14, 2014
Bookmark and Share
Explaining the connection between genotype and phenotype must also consider genetic material that doesn’t come from an organism’s chromosomes at all.

In 2003, when the human genome had been sequenced, many people expected a welter of new therapies to follow, as biologists identified the genes associated with particular diseases.

But the process that translates genes into proteins turned out to be much more involved than anticipated. Other elements — proteins, snippets of RNA, regions of the genome that act as binding sites, and chemical groups that attach to DNA — also regulate protein production, complicating the relationship between an organism’s genetic blueprint, or genotype, and its physical characteristics, or phenotype.

In the latest issue of the Proceedings of the National Academy of Sciences, researchers from MIT and the Whitehead Institute for Biomedical Research argue that biologists trying to explain the connection between genotype and phenotype need to consider yet another factor: genetic material that doesn’t come from an organism’s chromosomes at all.

Through a combination of clever lab experiments and quantitative analysis, the researchers showed that the consequences of deleting genes in yeast cells can’t be explained without the additional consideration of nonchromoomal genetic material — in particular, from the intracellular bodies known as mitochondria and from viruses that can linger in dividing cells.

“This reinforces the idea that when considering human genetics, we need to consider lots of different factors,” says David Gifford, a professor of computer science and engineering at MIT, who led the quantitative analysis. “We need to understand to what extent viruses can be passed from parent to offspring, as well as understanding the spectrum of mitochondria that are present in humans and their potential interactions with chromosomal mutations.”

Benchtop conundrum

The new work grew out of a fairly standard attempt to analyze the role of a particular group of yeast genes, Gifford explains, by comparing the growth rates of yeast colonies in which these genes had or had not been deleted. But the growth of the colonies with deletions was all over the map: Sometimes it was as robust as in the normal yeast cells, sometimes it was dramatically slower, and often it was in between.

“We couldn’t reproduce many of our findings and found out that as experiments were progressing, this double-stranded RNA virus was being lost in particular strains, although it was having a large influence when it was present,” Gifford says. “We then hypothesized that if this virus was important, it was conceivable that other nonchromosomal genetic elements could be important, and that’s when we started looking at the mitochondria. And our collaborators at the Whitehead Institute designed this very clever way of swapping mitochondria between yeast strains so we could isolate and examine exactly what effect the mitochondria were having.”

Mitochondria are an evolutionary peculiarity. Frequently referred to as the “power plant of the cell” because they produce the chemical fuel adenosine triphosphate, or ATP, they are essential components of almost all plant, animal, and fungus cells. But they have their own genomes, which are distinct from those of their host cells. The leading theory about their origin is that they were originally bacteria that developed a symbiotic relationship with early life forms.

Asserting control

Gerald Fink, the American Cancer Society Professor of Genetics at MIT and a member of the Whitehead Institute, and two researchers in his group — Lindsey Dollard and Anna Symbor-Nagrabska — removed the mitochondria from one of the yeast cells they were studying and allowed it to mate with a cell from a different yeast strain. But they prevented the cells’ nuclei — the repositories of their genetic material — from fusing. Then they forced the new, two-nucleus cell to divide, creating a new strain in which the nucleus of one yeast strain was combined with the mitochondria of the other.

In this way, for each of the genetic deletions the researchers studied, they had strains in which each nuclear state — gene deleted, or left intact — was combined with each of several different types of mitochondria. For each of those strains, they also created variations that were and were not infected with the virus.

Compounded influences

That provided Gifford and his student Matthew Edwards with reliable data, but they still had to make sense of it. Gene deletion alone seemed to explain about 40 percent of the variance they saw in yeast colonies’ growth rates. Gene deletion combined with a blunt categorization of strains according to their nonchromosomal material explained the other 60 percent.

But Gifford and Edwards built a more detailed mathematical model that posited a nonlinearinteraction between the virus and particular strains of mitochondria. That model explained more than 90 percent of the variation they saw — not only in colonies with deleted genes, but in the naturally occurring yeast cells as well.

“You might think that the effect of the chromosomal modification and the effect, for example, of the virus were both important but independent,” Gifford says. “What we found is that they weren’t independent. They were synergistic.”

“At a very high level and at a very conceptual level, what they’re showing is that we should also be looking for heritability and variation in phenotype in regions that are not in the chromosomal DNA,” says Eran Segal, a professor of applied mathematics at the Weizmann Institute in Israel whose group does computational biology. “There’s anecdotal evidence that we’ll see similar things in humans.”

Biologists attempting to fill gaps in our understanding of heritability have offered “plausible explanations, like rare variants and combinations that from a statistical-power point of view are hard to analyze,” Segal says. “Some of the missing heritability is definitely in there.” But the MIT researchers’ paper, he says, “highlights that there may be simpler — simpler in the sense that we can more easily access it — heritability that we can explain maybe by also looking at the nonchromosomal genetic material that human cells carry. With fairly easy techniques, we can access that information, and I think that researchers in the field would be wise to begin to look at it.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Tuesday, November 24, 2015
Game for Climate Adaptation
MIT-led project shows a new method to help communities manage climate risks.
Friday, November 06, 2015
Using Ultrasound to Improve Drug Delivery
New approach could aid in treatment of inflammatory bowel disease.
Friday, October 23, 2015
Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Quantum Physics Meets Genetic Engineering
Researchers use engineered viruses to provide quantum-based enhancement of energy transport.
Friday, October 16, 2015
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Friday, October 02, 2015
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Personalized Heart Models For Surgical Planning
System can convert MRI scans into 3D-printed, physical models in a few hours.
Friday, September 18, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos