Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Damaged Protein Could be Key to Premature Ageing

Published: Wednesday, May 14, 2014
Last Updated: Wednesday, May 14, 2014
Bookmark and Share
Scientists have found that the condition of key proteins in the mitochondria -the batteries of cells- could be used to predict, and eventually treat premature ageing. And restricting diet could be one way of making this happen.

The researchers from Newcastle University used interventions, like calorie restriction, a system whereby the cells are deprived of nutrients and which in previous studies has been shown to cause mice to live longer than normal.

These interventions also resulted in more efficient assembly of important mitochondrial proteins into complexes.  In a complex state, proteins work together more effectively, while on their own they generate toxic free radicals, which in turn cause cells to age more rapidly. If a similar mechanism is found in people it could lead to treatments, such as new drugs to improve protein assembly. In a paper published today in the journal Nature Communications the team describe their findings.

Ageing process

Thomas von Zglinicki, Professor of Cellular Gerontology at the Institute for Ageing and Health, Newcastle University, said: “Free radicals have long been linked with the ageing process. Mitochondria generate the energy required to keep our bodies going but they also generate free radicals. How exactly they are involved in ageing is still controversial. Our data shows that quite minor differences can explain large variations in healthy lifespan. Essentially what we have found is that the ageing process goes slower than normal in mice that managed to form mitochondrial protein complexes more efficiently, and that we actually could help them to do so.”

A complex of 96 proteins is at the heart of the mitochondrial power station. Comparing the protein composition in mitochondria from mice that had more or less propensity to long life, the team found the mitochondria from long-lived animals surprisingly had less of these proteins and thus seemed less well suited for energy production than the shorter-living mice.

However, further research showed that assembly of the protein complex was the key: If individual components were more scarce, assembly was perfect, but became more sloppy if more material was around. This then led to less efficient energy production and more release of oxygen free radicals, toxic by-products of mitochondrial metabolism.

Calorie restriction could extend lifespan

Dr Satomi Miwa, joint lead researcher on the team and a specialist on mitochondrial function, said: “These data go a long way to explain how calorie restriction can improve mitochondrial function, extend lifespan and reduce or postpone many age-associated diseases.”

Professor Thomas von Zglinicki added: “We have shown here that complex assembly efficiency correlates to longevity differences in mice that correspond to one or two decades of healthy life in humans. We have also shown that human cells age faster if we corrupt complex assembly. What we now need to do is to see how we can improve the quality of these protein complexes in humans and whether this would extend healthy life.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Losing the Fight Against Antibiotic Resistance
Tackling antibiotic resistance on only one front is a waste of time because resistant genes are freely crossing environmental, agricultural and clinical boundaries, new research has shown.
Thursday, February 18, 2016
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Friday, February 05, 2016
Funding from Charity for New Treatments to Silence Tinnitus
Researchers are currently conducting a clinical trial of a drug for tinnitus.
Friday, February 06, 2015
Stem Cell Firm Selects Newcastle for European Base
RNL Bio has signed an initial 12 month tenancy agreement for a unit at the ‘Cels at Newcastle’ bio-incubator at Newcastle University's Medical School.
Friday, February 08, 2008
Stem Cell Research Could aid Male Infertility
Study helps scientists to understand more about how animals produce sperm.
Wednesday, July 12, 2006
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!