Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

High Temperature Synthesis Using Heating Blocks

Published: Thursday, May 15, 2014
Last Updated: Thursday, May 15, 2014
Bookmark and Share
Asynt DrySyn MULTI heating block systems are being utilised to support ground breaking synthetic research in photovoltaics, water splitting and nanoimaging.

In order to improve safety in his laboratories, Leone Spiccia, Professor of Chemistry at Monash University sought laboratory apparatus to replace oil bath systems traditionally used for all general syntheses. 

He comments  “After a lengthy evaluation process we decided to switch to DrySyn heating block systems as they are inherently safer to use than heated oil baths, avoiding the risk of oil spillage that can lead to burns when hot or may cause someone to slip over”.

Professor Spiccia added “We are using DrySyn products inside our nanoimaging team. As part of this research we synthesise nanoparticles based on lanthanides – for which we must reach high temperatures (> 300 °C).  For this work, we need to have precise fine control of both the final temperature and the heating speed together with a good heat transfer to obtain good quality particles with a narrow size distribution. We could not use an oil bath because of the high temperatures and heating mantles cannot provide the control we needed for the synthesis, so DrySyn has been really important to us to achieve good research results”.

The DrySyn MULTI from Asynt provides a safe and convenient way to perform precisely controlled heated reactions in parallel. Affordably priced, the DrySyn MULTI converts any standard hotplate stirrer into a reaction block accommodating three flasks or up to 12 reactions in tubes or vials. Made of chemically resistant, anodized aluminium, DrySyn MULTI heating blocks offer excellent heating performance to over 300ºC and can heat a reaction flask 25 per cent faster than an oil bath. 

Photovoltaic research being undertaken by Professor Spiccia and his group at the University of Monash is mainly focused on finding new electrolytes and redox couples for dye-sensitised solar cells and optimising other parameters for the cell assembly. The water splitting team is working on artificial photosynthesis, a concept to convert solar energy into a storable form of energy by splitting water into hydrogen and oxygen. The nanoimaging team works at the interface of chemistry, biology and nanomaterial science. They are pursuing multidisciplinary projects to design, prepare and characterise functionalised nanomaterials intended for application including multimodal imaging as well as therapeutic and diagnostic agents for early detection and treatment of cancer. For further information please visit www.chem.monash.edu.au  


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Parallel Evaporation in Heating Blocks
New DrySyn Spiral Evaporator enables scientists to evaporate tubes directly in DrySyn synthesis blocks.
Wednesday, November 04, 2015
Asynt - Leader of the Pack at Lab Innovations 2014
Company wins this year’s Lions’ Lair competition, fighting off competition from three other exhibitors pitching their most innovative products.
Thursday, November 06, 2014
Imperial College Employs Parallel Synthesis to Develop Better Catalysts
Asynt DrySyn MULTI and parallel synthesis kits to provide safer, more convenient way to perform heated catalytic reactions in parallel.
Thursday, April 18, 2013
Asynt DrySyn™ Reaches Out to Aspiring Chemists
Newcastle University’s new Outreach project, which aims to inspire young people to gain interest in chemistry, uses Asynt DrySyn heating blocks.
Thursday, June 24, 2010
A Treasure Trove for the Synthetic Chemist
Asynt’s website offers solutions for synthesis, purification, and evaporation as well as an extensive library of molecular building blocks.
Friday, May 11, 2007
Asynt Announce UK Distribution for the Vapourtec V-10
Versatile V-10 offers extensive flexibility and enables rapid, low temperature evaporation of compounds.
Wednesday, November 30, 2005
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Forensic 3D Documentation of Skin Injuries
In this study, the validity of using photogrammetry for documenting injuries in a pathological context was demonstrated.
3-D Printed Dog’s Nose Improves Vapor Detection
By mimicking how dogs get their whiffs, a team of government and university researchers have demonstrated that “active sniffing” can improve by more than 10 times the performance of current technologies that rely on continuous suction to detect trace amounts of explosives and other contraband.
New Markers for Forensic Body-fluid Identification
University of Bonn researchers have successfully identified specific Micro-RNA signatures to help forensically identify body fluids.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!