Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Paving the Way for Higher-Quality Advanced Materials

Published: Tuesday, May 06, 2014
Last Updated: Monday, May 19, 2014
Bookmark and Share
Imperial scientists have developed a new technique for carrying out multiple-step chemical reactions to improve production of advanced materials.

The technique allows chemists to do multiple-step reactions inside tiny droplets in a flowing stream – a process known as droplet chemistry – and should make it possible to carry out more sophisticated chemical reactions than have previously been possible. The method will make it easier to create high-quality, high-performance advanced materials for new plastic electronics such as flexible computer screens and affordable solar panels. The Imperial researchers describe their new ‘three-phase multistep droplet reactor’ in a paper in the journal Nature Communications.

Droplet chemistry is a form of “flow chemistry” where reactive chemicals combine, mix, and react inside networks of narrow pipes or channels to create new materials. In conventional forms of flow chemistry the reaction solution moves through the pipes as a continuous stream, and over time residue may deposit on the channel walls, causing fouling.

In droplet chemistry, the reaction solution flows as discrete droplets inside a second liquid that it cannot mix with. This prevents channel-fouling as the droplets are kept away from the walls of the reactor by the other liquid. The small size of the droplets also improves the uniformity of the reaction, leading to a better quality product.

One of the lead researchers, Adrian Nightingale, then a postdoctoral researcher in the Department of Chemistry, said: “When arteries become blocked the whole circulatory system can quickly fail, with fatal consequences. Similarly, when the tubes we use in flow chemistry become blocked, flow reactors fail and production stops. Droplet-based chemistry eradicates this problem, but previously it could only be used for very simple, single-step reactions where all reagents were present in the droplets from the outset. Here we have developed a method for controllably injecting new reagents into the flowing droplets, greatly expanding the palette of materials that can be produced.”

In the new research, the scientists have introduced a third phase, a gas, alongside the two liquids to establish an even spacing between the droplets and so ensure that each one receives the same dose of the added reagent.

John de Mello, who heads up the research team, likened the challenge to throwing small parcels into the open windows of passing cars. “If the cars are all moving at the same speed and are exactly the same distance apart, you can time things well and achieve a perfect success rate. That’s what the gas is needed for – to maintain a uniform separation between droplets.”

James Bannock from Imperial’s Doctoral Training Centre In Plastic Electronics commented: “This three-phase droplet chemistry provides an incredibly controlled, straightforward and low cost method for carrying out the multistep chemical procedures needed to create robust and high-quality advanced materials.”

Tom Phillips, also a co-author of the work, added: “This step forward is very exciting for industry as the method should scale well to higher production volumes, allowing high-specification advanced materials to be made in the quantities that industry needs.”

The scientists compared the performance of the three-phase reactor to conventional droplet reactors by using a simple visual test. They added a continuous stream of red dye to a droplet stream of blue dye, and then they recorded images of the droplets before and after the red dye was added. Without the gas, there were irregularities in the spacing between the droplets after dye was added and significant variations in their size and colouration due to inconsistent dosing. With the gas present, all droplets were uniformly spaced and had the same purple colour after dye was added, indicating that each droplet had received the exact same dose of dye.

The scientists used their new three-phase chemical reactor to create quantum dots, which are nanocrystals made of semiconductors most commonly used in solar cells and medical imaging. They believe the technique will be readily applicable to a broad range of fine chemicals and advanced materials.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Wednesday, May 18, 2016
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
Tuesday, May 17, 2016
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Monday, May 16, 2016
Scans Reveal Babies of Mothers with Gestational Diabetes Have More Body Fat
Researchers at Imperial College London have found that the babies born to mothers with gestational diabetes have more body fat at two months of age compared to babies born to healthy mothers.
Saturday, May 14, 2016
The Brain on LSD: New Scans Show How the Drug Affects the Brain
Researchers at Imperial College London have visualised the effects of LSD on the brain.
Tuesday, April 12, 2016
Cost of Diabetes Hits 825 Billion Dollars a Year
The global cost of diabetes is now 825 billion dollars per year, according to the largest ever study of diabetes levels across the world.
Thursday, April 07, 2016
World's Obese Population Hits 640 Million
More than one in ten men and one in seven women across the globe are now obese, according to the world's biggest obesity study.
Friday, April 01, 2016
Interactive Maps Reveal Global Obesity
World’s obese population hits 640 million, according to largest ever study.
Friday, April 01, 2016
Switching Off Cancers' Ability to Spread
A key molecule in breast and lung cancer cells can help switch off the cancers' ability to spread around the body.
Tuesday, March 22, 2016
Bacterial Motors Unveiled
Nanoscopic 3D imaging has revealed how different bacteria have geared their tiny propeller motors for a wide range of swimming abilities.
Thursday, March 17, 2016
New App Advises and Reminds Pregnant Women About Vaccinations
Researchers at Imperial College London have developed a new app to guide and remind pregnant women about vaccines recommended during pregnancy.
Saturday, March 12, 2016
Infant Milk Formula Does Not Reduce Risk of Eczema and Allergies, Says New Study
Researchers at Imperial College London have found a type of baby formula does not reduce allergy risk - despite previous claims to the contrary.
Wednesday, March 09, 2016
Too Many Avoidable Errors in Patient Care, Says Report
Researchers at Imperial College London have launched the reports in which provide evidence on the current state of patient safety and how it could be improved the future.
Tuesday, March 08, 2016
Big and Small Numbers are Processed in Different Sides of the Brain
Researchers at Imperial College London have suggested that the small numbers are processed in the right side of the brain, while large numbers are processed in the left side of the brain.
Saturday, March 05, 2016
Fossil Find Reveals Just How Big Carnivorous Dinosaur May Have Grown
Researchers at imperial college London have said that an unidentified fossilised bone in a museum has revealed the size of a fearsome Abelisaur and may solve a hundred-year-old puzzle.
Tuesday, March 01, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!