Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Paving the Way for Higher-Quality Advanced Materials

Published: Tuesday, May 06, 2014
Last Updated: Monday, May 19, 2014
Bookmark and Share
Imperial scientists have developed a new technique for carrying out multiple-step chemical reactions to improve production of advanced materials.

The technique allows chemists to do multiple-step reactions inside tiny droplets in a flowing stream – a process known as droplet chemistry – and should make it possible to carry out more sophisticated chemical reactions than have previously been possible. The method will make it easier to create high-quality, high-performance advanced materials for new plastic electronics such as flexible computer screens and affordable solar panels. The Imperial researchers describe their new ‘three-phase multistep droplet reactor’ in a paper in the journal Nature Communications.

Droplet chemistry is a form of “flow chemistry” where reactive chemicals combine, mix, and react inside networks of narrow pipes or channels to create new materials. In conventional forms of flow chemistry the reaction solution moves through the pipes as a continuous stream, and over time residue may deposit on the channel walls, causing fouling.

In droplet chemistry, the reaction solution flows as discrete droplets inside a second liquid that it cannot mix with. This prevents channel-fouling as the droplets are kept away from the walls of the reactor by the other liquid. The small size of the droplets also improves the uniformity of the reaction, leading to a better quality product.

One of the lead researchers, Adrian Nightingale, then a postdoctoral researcher in the Department of Chemistry, said: “When arteries become blocked the whole circulatory system can quickly fail, with fatal consequences. Similarly, when the tubes we use in flow chemistry become blocked, flow reactors fail and production stops. Droplet-based chemistry eradicates this problem, but previously it could only be used for very simple, single-step reactions where all reagents were present in the droplets from the outset. Here we have developed a method for controllably injecting new reagents into the flowing droplets, greatly expanding the palette of materials that can be produced.”

In the new research, the scientists have introduced a third phase, a gas, alongside the two liquids to establish an even spacing between the droplets and so ensure that each one receives the same dose of the added reagent.

John de Mello, who heads up the research team, likened the challenge to throwing small parcels into the open windows of passing cars. “If the cars are all moving at the same speed and are exactly the same distance apart, you can time things well and achieve a perfect success rate. That’s what the gas is needed for – to maintain a uniform separation between droplets.”

James Bannock from Imperial’s Doctoral Training Centre In Plastic Electronics commented: “This three-phase droplet chemistry provides an incredibly controlled, straightforward and low cost method for carrying out the multistep chemical procedures needed to create robust and high-quality advanced materials.”

Tom Phillips, also a co-author of the work, added: “This step forward is very exciting for industry as the method should scale well to higher production volumes, allowing high-specification advanced materials to be made in the quantities that industry needs.”

The scientists compared the performance of the three-phase reactor to conventional droplet reactors by using a simple visual test. They added a continuous stream of red dye to a droplet stream of blue dye, and then they recorded images of the droplets before and after the red dye was added. Without the gas, there were irregularities in the spacing between the droplets after dye was added and significant variations in their size and colouration due to inconsistent dosing. With the gas present, all droplets were uniformly spaced and had the same purple colour after dye was added, indicating that each droplet had received the exact same dose of dye.

The scientists used their new three-phase chemical reactor to create quantum dots, which are nanocrystals made of semiconductors most commonly used in solar cells and medical imaging. They believe the technique will be readily applicable to a broad range of fine chemicals and advanced materials.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Zika Epidemic Likely to End Within Three Years
A team of scientists has predicted that the current Zika epidemic is likely to end within three years because there will be too few people left to infect.
Friday, July 15, 2016
Sound Waves May Hold Potential to Treat Twin Pregnancy Complications
Researchers at Imperial College London have found that the high energy sound waves could treat a potentially deadly complication that affects some twin pregnancies.
Friday, July 15, 2016
Viral hepatitis kills as Many as Malaria, TB or HIV/AIDS
Viral hepatitis is one of the leading killers across the globe, with a death toll that matches AIDS or tuberculosis.
Thursday, July 07, 2016
Supplement May Switch off Cravings for High-Calorie Foods
Researchers have found that inulin-propionate ester supplement curbs cravings for junk food.
Saturday, July 02, 2016
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Friday, June 24, 2016
£14m EU Project To Aid Meningitis Diagnosis and Cut Antibiotic Use
An international team of doctors are aiming to develop a rapid test to allow medics to quickly identify bacterial infection in children.
Wednesday, June 22, 2016
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Wednesday, May 18, 2016
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
Tuesday, May 17, 2016
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Monday, May 16, 2016
Scans Reveal Babies of Mothers with Gestational Diabetes Have More Body Fat
Researchers at Imperial College London have found that the babies born to mothers with gestational diabetes have more body fat at two months of age compared to babies born to healthy mothers.
Saturday, May 14, 2016
The Brain on LSD: New Scans Show How the Drug Affects the Brain
Researchers at Imperial College London have visualised the effects of LSD on the brain.
Tuesday, April 12, 2016
Cost of Diabetes Hits 825 Billion Dollars a Year
The global cost of diabetes is now 825 billion dollars per year, according to the largest ever study of diabetes levels across the world.
Thursday, April 07, 2016
World's Obese Population Hits 640 Million
More than one in ten men and one in seven women across the globe are now obese, according to the world's biggest obesity study.
Friday, April 01, 2016
Interactive Maps Reveal Global Obesity
World’s obese population hits 640 million, according to largest ever study.
Friday, April 01, 2016
Switching Off Cancers' Ability to Spread
A key molecule in breast and lung cancer cells can help switch off the cancers' ability to spread around the body.
Tuesday, March 22, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!