Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chemists Discover Cancer Drug Candidate Structure

Published: Wednesday, May 21, 2014
Last Updated: Wednesday, May 21, 2014
Bookmark and Share
Chemists at The Scripps Research Institute have determined the correct structure of a highly promising anticancer compound approved by the U.S. FDA for clinical trials in cancer patients.

The new report, published this week by the international chemistry journal Angewandte Chemie, focuses on a compound called TIC10.

In the new study, the TSRI scientists show that TIC10’s structure differs subtly from a version published by another group last year, and that the previous structure associated with TIC10 in fact describes a molecule that lacks TIC10’s anticancer activity.

By contrast, the correct structure describes a molecule with potent anticancer effects in animals, representing a new family of biologically active structures that can now be explored for their possible therapeutic uses.

“This new structure should generate much interest in the cancer research community,” said Kim D. Janda, the Ely R. Callaway Jr. Professor of Chemistry and member of the Skaggs Institute for Chemical Biology at TSRI.

Antitumor Potential
TIC10 was first described in a paper in the journal Science Translational Medicine in early 2013. The authors identified the compound, within a library of thousands of molecules maintained by the National Cancer Institute (NCI), for its ability to boost cells’ production of a powerful natural antitumor protein, TRAIL. (TIC10 means TRAIL-Inducing Compound #10.)

As a small molecule, TIC10 would be easier to deliver in a therapy than the TRAIL protein itself. The paper, which drew widespread media coverage, reported that TIC10 was orally active and dramatically shrank a variety of tumors in mice, including notoriously treatment-resistant glioblastomas.

Tumors can develop resistance to TRAIL, but Janda had been studying compounds that defeat this resistance. The news about TIC10 therefore got his attention. “I thought, ‘They have this molecule for upregulating TRAIL, and we have these molecules that can overcome tumor cell TRAIL resistance—the combination could be important,’” he said.

The original publication on TIC10 included a figure showing its predicted structure. “I saw the figure and asked one of my postdocs, Jonathan Lockner, to make some,” Janda said.

Although the other team had seemingly confirmed the predicted structure with a basic technique called mass spectrometry, no one had yet published a thorough characterization of the TIC10 molecule. “There were no nuclear magnetic resonance data or X-ray crystallography data, and there was definitely no procedure for the synthesis,” Lockner said. “My background was chemistry, though, so I was able to find a way to synthesize it starting from simple compounds.”

Surprising Inactivity
There was just one problem with Lockner’s newly synthesized “TIC10.” When tested, it failed to induce TRAIL expression in cells, even at high doses.

“Of course I was nervous,” remembered Lockner. “As a chemist, you never want to make a mistake and give biologists the wrong material.”

To try to verify they had the right material, Janda’s team obtained a sample of TIC10 directly from the NCI. “When we got that sample and tested it, we saw that it had the expected TRAIL-upregulating effect,” said Nicholas Jacob, a graduate student in the Janda Laboratory who, with Lockner, was a co-lead author of the new paper. “That prompted us to look more closely at the structures of these two compounds.”

The two researchers spent months characterizing their own synthesized material and the NCI material, using an array of sophisticated structural analysis tools. With Assistant Professor Vladimir V. Kravchenko of the TSRI Department of Immunology and Microbial Science, Jacob also tested the two compounds’ biological effects.

The team eventually concluded that the TIC10 compound from the NCI library does boost TRAIL production in cells and remains promising as the basis for anticancer therapies, but it does not have the structure that was originally published.

The Right Structure
The originally published structure has a core made of three carbon-nitrogen rings in a straight line and does not induce TRAIL activity. The correct, TRAIL-inducing structure differs subtly, with an end ring that sticks out at an angle. In chemists’ parlance, the two compounds are constitutional isomers: a linear imidazolinopyrimidinone and an angularimidazolinopyrimidinone.

Ironically, Lockner found that the angular TRAIL-inducing structure was easier to synthesize than the one originally described.

Now, with the correct molecule in hand and a solid understanding of its structure and synthesis, Janda and his team are moving forward with their original plan to study TIC10 in combination with TRAIL-resistance-thwarting molecules as an anticancer therapy.

The therapeutic implications of TIC10 may even go beyond cancer. The angular core of the TRAIL-inducing molecule discovered by Janda’s team turns out to be a novel type of a biologically active structure—or “pharmacophore”—from which chemists may now be able to build a new class of candidate drugs, possibly for a variety of ailments.

 “One lesson from this has got to be: don’t leave your chemists behind,” said Janda.

Funding for the research, published in a paper titled “Pharmacophore Reassignment for Induction of the Immunosurveillant TRAIL” (DOI: 10.1002/anie.201), was provided by The Skaggs Institute for Chemical Biology and TSRI. 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Wednesday, April 27, 2016
First ‘Teenage’ HIV-Neutralizing Antibody Discovered
Scientists have studied the evolution of anti-HIV antibodies, with hopes of creating a vaccine to prevent AIDS.
Wednesday, April 06, 2016
Discovering 'Outlier' Enzymes
Researchers at TSRI and Salk Institute have discovered 'Outlier' enzymes that could offer new targets to treat type 2 diabetes and inflammatory disorders.
Saturday, April 02, 2016
Encouraging Foundation for Upcoming AIDS Vaccine Clinical Trial
Engineered vaccine protein binds key immune cells that exist in nearly everyone.
Tuesday, March 29, 2016
New Approach to Curbing Cancer Cell Growth
Using a new approach, scientists at The Scripps Research Institute (TSRI) and collaborating institutions have discovered a novel drug candidate that could be used to treat certain types of breast cancer, lung cancer and melanoma.
Monday, March 14, 2016
Vaccine Against Dangerous Designer Opioids
With use of synthetic opioid "designer drugs" on the rise, scientists from The Scripps Research Institute (TSRI) have a new strategy to curb addiction and even prevent fatal overdoses.
Thursday, February 18, 2016
Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Friday, October 02, 2015
Key Morphine Regulator Identified
The findings could lead to less addictive pain medications.
Thursday, September 24, 2015
$6 Million Awarded to Develop Alternative HIV/AIDS Vaccine
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded up to nearly $6 million from the Bill & Melinda Gates Foundation to develop a revolutionary HIV/AIDS alternative vaccine that has demonstrated great potential in animal models.
Thursday, September 24, 2015
Novel Role of Mitochondria in Immune Function Identified
Scientists at The Scripps Research Institute (TSRI) have discovered a new role for an enzyme involved in cell death.
Monday, September 21, 2015
Scientists Make Strides in Therapy Preventing Addiction Relapse
Single Injection of Drug Candidate Prevents Meth Relapse in Animal Models.
Thursday, August 06, 2015
New Antibody Weapons Against Marburg Virus
A study has identified new immune molecules that protect against deadly Marburg virus, a relative of Ebola virus.
Tuesday, June 30, 2015
Team Led by TSRI Scientists Shows AIDS Vaccine Candidate Successfully ‘Primes’ Immune System
New research shows that an experimental vaccine candidate can stimulate immune activity necessary to prevent HIV infection.
Thursday, June 25, 2015
New Details of Potential Alzheimer’s Treatment Uncovered
Scientists from Florida’s Scripps Resarch Institute have uncovered suprising new details of potential Alzheimer’s treatment.
Wednesday, April 29, 2015
Search for Cancer Drug Candidates
Scripps Florida scientists awarded $1.2 million to find drug candidates that could treat a wide range of cancers.
Friday, April 10, 2015
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!