" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Study Shows How Sheep First Separated from Goats

Published: Saturday, June 07, 2014
Last Updated: Saturday, June 07, 2014
Bookmark and Share
Findings support the development of DNA testing to speed-up selective breeding programmes.

Scientists have cracked the genetic code of sheep to reveal how they became a distinct species from goats around four million years ago.

The study is the first to pinpoint the genetic differences that make sheep different from other animals.

The findings could aid the development of DNA testing to speed-up selective breeding programmes, helping farmers to improve their stocks.

The research identifies the genes that give sheep their fleece and uncovers features of their digestive system, which makes them so well-suited to a diet of low quality grass and other plants.

It also builds the most complete picture yet of sheep's complex biology. Further studies using this resource could reveal new insights to diseases that affect sheep.

Researchers from the University of Edinburgh's Roslin Institute, which receives strategic funding from the Biotechnology and Biological Sciences Research Council, were part of a global team that has decoded the genome sequence - the entire genetic make-up - of domestic sheep for the first time.

This team - the International Sheep Genomics Consortium - compared the sheep's genes with those of other animals - including humans, cattle, goats and pigs.

The analysis identifies several genes that are associated with wool production. It also reveals genes that underpin the evolution of the rumen - a specialized chamber of the stomach that breaks down plant material to make it ready for digestion.

This collaborative study, involving 26 research institutions in eight different countries, was led by researchers from the Commonwealth Scientific and Industrial Research Organization, Australia; BGI and the Kunming Institute of Zoology, China; Utah State University and Baylor College of Medicine in the US; and The Roslin Institute.

The BBSRC-funded ARK-Genomics facility - which is part of Edinburgh Genomics at the University of Edinburgh - provided a substantial body of sequence data, including information on which genes are expressed in a spectrum of 40 different tissues.

The study is published in the journal Science.

Professor Alan Archibald, Head of Genetics and Genomics at The Roslin Institute, said: "Sheep were one of the first animals to be domesticated for farming and are still an important part of the global agricultural economy. Understanding more about their genetic make-up will help us to breed healthier and more productive flocks."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Breaking Cell Barriers with Retractable Protein Nanoneedles
Adapting a bacterial structure, institute researchers have developed protein actuators that can mechanically puncture cells.
Gene Signature could Lead to a New Way of Diagnosing Lyme Disease
Lyme disease patients had distinctive gene signatures that persisted for at least three weeks, even after they had taken the antibiotics.
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!