Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Develop ‘Onion’ Vesicles for Drug Delivery

Published: Wednesday, June 11, 2014
Last Updated: Wednesday, June 11, 2014
Bookmark and Share
University of Pennsylvania researchers have shown that dendrimer-based vesicles self-assemble with concentric layers of membranes, much like an onion.

One of the defining features of cells is their membranes. Each cell’s repository of DNA and protein-making machinery must be kept stable and secure from invaders and toxins. Scientists have attempted to replicate these properties, but, despite decades of research, even the most basic membrane structures, known as vesicles, still face many problems when made in the lab. They are difficult to make at consistent sizes and lack the stability of their biological counterparts.

Now, University of Pennsylvania researchers have shown that a certain kind of dendrimer, a molecule that features tree-like branches, offers a simple way of creating vesicles and tailoring their diameter and thickness. Moreover, these dendrimer-based vesicles self-assemble with concentric layers of membranes, much like an onion.

By altering the concentration of the dendrimers suspended within, the researchers have shown that they can control the number of layers, and thus the diameter of the vesicle, when the solution is injected in water. Such a structure opens up possibilities of releasing drugs over longer periods of time, with a new dose in each layer, or even putting a cocktail of drugs in different layers so each is released in sequence.

The study was led by professor Virgil Percec, of the Department of Chemistry in Penn’s School of Arts & Sciences. Also contributing to the study were members of Percec’s lab, Shaodong Zhang, Hao-Jan Sun, Andrew D. Hughes, Ralph-Olivier Moussodia and Annabelle Bertin, as well as professor Paul Heiney of theDepartment of Physics and Astronomy. They collaborated with researchers at the University of Delaware and Temple University.   

Their study was published in Proceedings of the National Academy of Sciences.

Cell membranes are made of two layers of molecules, each of which has a head that is attracted to water and a tail that is repelled by it. These bilayer membranes self-assemble so that the hydrophilic heads of the molecules of both layers are on the exterior, facing the water that is in the cell’s environment as well as the water encapsulated inside.  

For decades, scientists have been trying to replicate the most basic form of this arrangement, known as a vesicle, in the lab. Stripping out the additional proteins and sugars that cells naturally have in their membranes leaves just a double-walled bubble that can be stuffed with drugs or other useful content.

“The problem,” Percec said, “is that once you remove the proteins and the other elements of a real biological membrane, they are unstable and don't last for a long time. It's also hard to control their permeability and their polydispersity, which is how close together in size they are. The methodologies for producing them are also complicated and expensive.”

Research in this field has thus been focused on finding new chemistries to replace the fatty molecules that normally make up a vesicle’s bilayer.

The Percec group’s breakthrough came in 2010, when they started making vesicles using a class of molecules called amphiphilic Janus dendrimers.

Like the Roman god Janus, these molecules have two faces. Each face has tree-like branches instead of the head and tail found in the molecules that make up biological membranes found in nature. But like those molecules, these dendrimers are amphiphilic, meaning that one face’s branches is hydrophilic and the other is hydrophobic.

In 2010, Percec and his colleagues found the smallest possible amphiphilic Janus dendrimer. Dissolving those molecules in an alcohol solution and injecting them into water, the researchers found that they formed stable, evenly sized vesicles.

Not all cells are content with just a single bilayer, however. Some biological systems, such as gram-negative bacteria and the myelin sheaths that cover nerves, have multiple concentric bilayers. Having a model system with that arrangement could provide some fundamental insights to these real-world systems, and the added stability of extra layers of padding would be a useful trait in clinical applications. However, methods for producing vesicles with multiple bilayers remained elusive.  

“The only way it has been achieved in the past was through a complicated mechanical process, which was a dead end,” Percec said. “This was not a viable option for mass-producing multilayered vesicles, but, with our library of amphiphilic Janus dendrimers, we were lucky to find some molecules that have in their chemicals instructions needed to self-assemble into these very beautiful structures.”

By testing different dendrimers with different organic solvents, the research team found they could produce these onion-like vesicles and control the number of layers they contained. By changing the concentration of the dendrimers in the solvent, they could produce vesicles with as many as 20 layers when that solution was introduced to water. And because the layers are consistently spaced, the team could control the overall size of the vesicles by predicting the number of layers they could contain.       

To actually see the multilayered structure of their vesicles, the researchers used a technique known as cryogenic transmission electron microscopy, or CryoTEM. This technique can take pictures of objects at the nanoscale floating in aqueous solution. To keep the fluid-floating vesicles in frame, the team flash-froze the sample, locking them in amorphous ice that was free of damaging ice crystals.

With the vesicles characterized, a host of clinical applications are possible. One of the more enticing is encapsulating drugs in these vesicles. Many drugs are not water-soluble, so they need to be packaged with some other chemistry to allow them to flow through the bloodstream. The additional stability of multiple bilayers makes these onion vesicles an attractive option, and their unique structure opens the door to next generation nanomedicine.

“If you want to deliver a single drug over the course of 20 days,” Perce said, “you could think about putting one dose of the drug in each layer and have it released over time. Or you might put one drug in the first layer, another drug in the second and so on. Being able to control the diameter of the vesicles may also have clinical uses; target cells might only accept vesicles of a certain size.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Disrupting Cells’ ‘Powerhouses’ Can Lead to Tumor Growth
University of Pennsylvania researchers find that mitochondrial defects have a key role in a cells becoming cancerous.
Monday, July 13, 2015
New Tracking Method Yields Insights into Mitochondrial Dynamics
Scientists from the University of Pennsylvania have devised a powerful new technique that enables the tracking of every mitochondrion as it moves within a cell.
Thursday, July 02, 2015
Classification of Gene Mutations in Neuroblastoma
Penn Medicine and CHOP experts define riskier mutations in neuroblastoma, setting stage for clinical trial.
Tuesday, November 11, 2014
Potential Therapy for Myasthenia Gravis
Penn study demonstrates efficacy of potential therapy for autoimmune disorder of muscle weakness.
Wednesday, October 08, 2014
Center for Advanced Cellular Therapeutics to Rise on Penn Medicine Campus
New facility poised to accelerate the research and development of personalized cellular cancer therapies.
Friday, September 12, 2014
Gum Disease Bacteria Selectively Disarm Immune System, Penn Study Finds
New study shows that bacteria responsible for many cases of periodontitis cause dysbiosis.
Friday, June 13, 2014
Cell Senescence, Aging Related to Epigenetic Changes
One way cells promote tumor suppression is through a process called senescence, an irreversible arrest of proliferation.
Monday, September 02, 2013
Penn Researchers Show Cocaine Addiction Resistance May Be Passed Down from Father to Son
Animal model reveals paternal cocaine use confers protection against rewarding effects of cocaine in male but not female offspring.
Tuesday, December 18, 2012
A Comparative Medicine Study by Penn Vet Identifies a New Approach to Combat Viral Infections
When a virus such as influenza invades our bodies, interferon proteins are among the first immune molecules produced to fight off the attack.
Thursday, November 15, 2012
Tension on Gut Muscles Induces Cell Invasion in Zebrafish Intestine
Study finds this effect mimics cancer metastasis.
Wednesday, September 12, 2012
Pancreatic Cancer Can Run but Not Hide
Immune system tricked into helping cancer cells, but can be blocked, according to Penn study.
Wednesday, June 13, 2012
A Change of Heart: Penn Researchers Reprogram Brain Cells to Become Heart Cells
Researchers at the University of Pennsylvania demonstrate the direct conversion of a non-heart cell type into a heart cell by RNA transfer.
Thursday, July 14, 2011
A New Way to Make Reprogrammed Stem Cells
Penn study eliminates the use of transcription factors and increases efficiency 100-fold.
Wednesday, April 13, 2011
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Light of Fireflies for Medical Diagnostics
EPFL scientists have exploited the light of fireflies in a new method that detects biological molecules without the need for complex devices and high costs.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!