Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Embryonic Stem Cells Offer Treatment Promise for Multiple Sclerosis

Published: Friday, June 13, 2014
Last Updated: Friday, June 13, 2014
Bookmark and Share
Embryonic stem cell therapy offers better treatment results than human adult bone marrow derived stem cells.

Scientists in the University of Connecticut’s Technology Incubation Program have identified a novel approach to treating multiple sclerosis (MS) using human embryonic stem cells, offering a promising new therapy for more than 2.3 million people suffering from the debilitating disease.

The researchers demonstrated that the embryonic stem cell therapy significantly reduced MS disease severity in animal models, and offered better treatment results than stem cells derived from human adult bone marrow.

The study was led by ImStem Biotechnology Inc. of Farmington, Conn., in conjunction with UConn Health Professor Joel Pachter, Assistant Professor Stephen Crocker, and Advanced Cell Technology (ACT) Inc. of Massachusetts. ImStem was founded in 2012 by UConn doctors Xiaofang Wang and Ren-He Xu, along with Yale University doctor Xinghua Pan and investor Michael Men.

“The cutting-edge work by ImStem, our first spinoff company, demonstrates the success of Connecticut’s Stem Cell and Regenerative Medicine funding program in moving stem cells from bench to bedside,” says Professor Marc Lalande, director of the UConn’s Stem Cell Institute.

The research was supported by a $1.13 million group grant from the state of Connecticut’s Stem Cell Research Program that was awarded to ImStem and Professor Pachter’s lab.

“Connecticut’s investment in stem cells, especially human embryonic stem cells, continues to position our state as a leader in biomedical research,” says Gov. Dannel P. Malloy. “This new study moves us one step closer to a stem cell-based clinical product that could improve people’s lives.”

The researchers compared eight lines of adult bone marrow stem cells to four lines of human embryonic stem cells. All of the bone marrow-related stem cells expressed high levels of a protein molecule called a cytokine that stimulates autoimmunity and can worsen the disease. All of the human embryonic stem cell-related lines expressed little of the inflammatory cytokine.

Another advantage of human embryonic stem cells is that they can be propagated indefinitely in lab cultures and provide an unlimited source of high quality mesenchymal stem cells - the kind of stem cell needed for treatment of MS, the researchers say. This ability to reliably grow high quality mesenchymal stem cells from embryonic stem cells represents an advantage over adult bone marrow stem cells, which must be obtained from a limited supply of healthy donors and are of more variable quality.

“Groundbreaking research like this furthering opportunities for technology ventures demonstrates how the University acts as an economic engine for the state and regional economy,” says Jeff Seemann, UConn’s vice president for research.

The findings also offer potential therapy for other autoimmune diseases such as inflammatory bowel disease, rheumatoid arthritis, and type-1 diabetes, according to Xu, a corresponding author on the study and one of the few scientists in the world to have generated new human embryonic stem cell lines.

There is no cure for MS, a chronic neuroinflammatory disease in which the body’s immune system eats away at the protective sheath called myelin that covers the nerves. Damage to myelin interferes with communication between the brain, spinal cord, and other areas of the body. Current MS treatments only offer pain relief, and slow the progression of the disease by suppressing inflammation.

“The beauty of this new type of mesenchymal stem cells is their remarkable higher efficacy in the MS model,” says Wang, chief technology officer of ImStem.

The group’s findings appear in the current online edition of Stem Cell Reports, the official journal of the International Society for Stem Cell Research. ImStem is currently seeking FDA approval necessary to make this treatment available to patients.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Personalized Ovarian Cancer Vaccines
UConn Researchers have found a new way to identify protein mutations in cancer cells.
Thursday, October 09, 2014
UConn Chemist Discovers New Way to Stabilize Proteins
Discovery could lead to the development of stable vaccines and affordable artificial blood substitutes.
Wednesday, December 11, 2013
Stem Cells that “Fool” Immune System May Provide Vaccination for Cancer
Health Center researchers have revealed the potential for human stem cells to provide a vaccination against colon cancer.
Friday, November 27, 2009
Stem Cells Which "Fool Immune System" May Provide Vaccination for Cancer
Scientists from China have revealed the potential for human stem cells to provide a vaccination against colon cancer.
Tuesday, October 13, 2009
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
New Cancer Fighters Emerge From Lab
Rice University lab simplifies total synthesis of anti-cancer agent.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!