Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gum Disease Bacteria Selectively Disarm Immune System, Penn Study Finds

Published: Friday, June 13, 2014
Last Updated: Friday, June 13, 2014
Bookmark and Share
New study shows that bacteria responsible for many cases of periodontitis cause dysbiosis.

The human body is comprised of roughly 10 times more bacterial cells than human cells. In healthy people, these bacteria are typically harmless and often helpful, keeping disease-causing microbes at bay. But, when disturbances knock these bacterial populations out of balance, illnesses can arise. Periodontitis, a severe form of gum disease, is one example.

In a new study, University of Pennsylvania researchers show that bacteria responsible for many cases of periodontitis cause this imbalance, known as dysbiosis, with a sophisticated, two-prong manipulation of the human immune system.

Their findings, reported in the journal Cell Host & Microbe, lay out the mechanism, revealing that the periodontal bacterium Porphyromonas gingivalis acts on two molecular pathways to simultaneously block immune cells’ killing ability while preserving the cells’ ability to cause inflammation.

The selective strategy protects “bystander” gum bacteria from immune system clearance, promoting dysbiosis and leading to the bone loss and inflammation that characterizes periodontitis. At the same time, breakdown products produced by inflammation provide essential nutrients that “feed” the dysbiotic microbial community. The result is a vicious cycle in which inflammation and dysbiosis reinforce one another, exacerbating periodontitis.

George Hajishengallis, a professor in the Penn School of Dental Medicine’s Department of Microbiology, was the senior author on the paper, collaborating with co-senior author John Lambris, the Dr. Ralph and Sallie Weaver Professor of Research Medicine in the Department of Pathology and Laboratory Medicine in Penn’s Perelman School of Medicine. Collaborators included Tomoki Maekawa and Toshiharu Abe of Penn Dental Medicine.

Work by Hajishengallis’s group and collaborators had previously identified P. gingivalis as a “keystone pathogen.” Drawing an analogy from the field of ecology, in which a species such as a grizzly bear is thought of as a keystone species because of the influence it has over a number of other species in the community, the idea suggests that, although P. gingivalis may be relatively few in number in the mouth, their presence exerts an outsized pull on the overall microbial ecosystem. Indeed, the team has shown that, although P. gingivalis is responsible for instigating the process that leads to periodontitis, it can’t cause the disease by itself.

“Scientists are beginning to suspect that keystone pathogens might be playing a role in irritable bowel disease, colon cancer and other inflammatory diseases,” Hajishengallis said. “They’re bugs that can’t mediate the disease on their own; they need other, normally non-pathogenic bacteria to cause the inflammation.”

In this study, they wanted to more fully understand the molecules involved in the process by which P. gingivalis caused disease.

“We asked the question, how could bacteria evade killing without shutting off inflammation, which they need to obtain their food,” Hajishengallis said.

The researchers focused on neutrophils, which shoulder the bulk of responsibility of responding to periodontal insults. Based on the findings of previous studies, they examined the role of two protein receptors: C5aR and Toll-like receptor-2, or TLR2.

Inoculating mice with P. gingivalis, they found that animals that lacked either of these receptors as well as animals that were treated with drugs that blocked these receptors had lower levels of bacteria than untreated, normal mice. Blocking either of these receptors on human neutrophils in culture also significantly enhanced the cells’ ability to kill the bacteria. Microscopy revealed that P. gingivalis causes TLR2 and C5aR to physically come together.

“These findings suggest that there is some crosstalk between TLR2 and C5aR,” Hajishengallis said. “Without either one, the bacteria weren’t as effective at colonizing the gums.”

Further experiments in mice and in cultured human neutrophils helped the researchers identify additional elements of how P. gingivalis operates to subvert the immune system. They found that the TLR2-C5aR crosstalk leads to degradation of the protein MyD88, which normally helps clear infection. And in a separate pathway from MyD88, they discovered that P. gingivalis activates the enzyme PI3K through C5aR-TLR2 crosstalk, promoting inflammation and inhibiting neutrophils’ ability to phagocytose, or “eat,” invading bacteria.

Inhibiting the activity of either PI3K or a molecule that acted upstream of PI3K called Mal restored the neutrophils’ ability to clear P. gingivalis from the gums.

“P. gingivalis uses this connection between C5aR and TLR2 to disarm and dissociate the MyD88 pathway, which normally protects the host from infection, from the proinflammatory and immune-evasive pathway mediated by Mal and PI3K,” Hajishengallis said.

Not only does the team’s discovery open up new targets for periodontitis treatment, it also suggests a bacterial strategy that could be at play in other diseases involving dysbiosis.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Synthetic DNA Vaccine Against MERS Shows Promise
A novel synthetic DNA vaccine can, for the first time, induce protective immunity against the Middle East Respiratory Syndrome (MERS) coronavirus in animal species.
Friday, August 21, 2015
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Monday, August 03, 2015
Disrupting Cells’ ‘Powerhouses’ Can Lead to Tumor Growth
University of Pennsylvania researchers find that mitochondrial defects have a key role in a cells becoming cancerous.
Monday, July 13, 2015
New Tracking Method Yields Insights into Mitochondrial Dynamics
Scientists from the University of Pennsylvania have devised a powerful new technique that enables the tracking of every mitochondrion as it moves within a cell.
Thursday, July 02, 2015
Classification of Gene Mutations in Neuroblastoma
Penn Medicine and CHOP experts define riskier mutations in neuroblastoma, setting stage for clinical trial.
Tuesday, November 11, 2014
Potential Therapy for Myasthenia Gravis
Penn study demonstrates efficacy of potential therapy for autoimmune disorder of muscle weakness.
Wednesday, October 08, 2014
Center for Advanced Cellular Therapeutics to Rise on Penn Medicine Campus
New facility poised to accelerate the research and development of personalized cellular cancer therapies.
Friday, September 12, 2014
Researchers Develop ‘Onion’ Vesicles for Drug Delivery
University of Pennsylvania researchers have shown that dendrimer-based vesicles self-assemble with concentric layers of membranes, much like an onion.
Wednesday, June 11, 2014
Cell Senescence, Aging Related to Epigenetic Changes
One way cells promote tumor suppression is through a process called senescence, an irreversible arrest of proliferation.
Monday, September 02, 2013
Penn Researchers Show Cocaine Addiction Resistance May Be Passed Down from Father to Son
Animal model reveals paternal cocaine use confers protection against rewarding effects of cocaine in male but not female offspring.
Tuesday, December 18, 2012
A Comparative Medicine Study by Penn Vet Identifies a New Approach to Combat Viral Infections
When a virus such as influenza invades our bodies, interferon proteins are among the first immune molecules produced to fight off the attack.
Thursday, November 15, 2012
Tension on Gut Muscles Induces Cell Invasion in Zebrafish Intestine
Study finds this effect mimics cancer metastasis.
Wednesday, September 12, 2012
Pancreatic Cancer Can Run but Not Hide
Immune system tricked into helping cancer cells, but can be blocked, according to Penn study.
Wednesday, June 13, 2012
A Change of Heart: Penn Researchers Reprogram Brain Cells to Become Heart Cells
Researchers at the University of Pennsylvania demonstrate the direct conversion of a non-heart cell type into a heart cell by RNA transfer.
Thursday, July 14, 2011
A New Way to Make Reprogrammed Stem Cells
Penn study eliminates the use of transcription factors and increases efficiency 100-fold.
Wednesday, April 13, 2011
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!