Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Inflammation in Fat Tissue Helps Prevent Metabolic Disease

Published: Thursday, June 19, 2014
Last Updated: Thursday, June 19, 2014
Bookmark and Share
The findings were first published online June 12 in Cell Metabolism.

Chronic tissue inflammation is typically associated with obesity and metabolic disease, but new research from UT Southwestern Medical Center now finds that a level of “healthy” inflammation is necessary to prevent metabolic diseases, such as fatty liver.

“There is such a thing as ‘healthy’ inflammation, meaning inflammation that allows the tissue to grow and has overall benefits to the tissue itself and the whole body,” said Dr. Philipp Scherer, Director of the Touchstone Center for Diabetes Research and Professor of Internal Medicine and Cell Biology at UT Southwestern. “The same principle also applies in muscle: Exercise induces some inflammation in the tissue, but also leads to better and stronger muscles and, consequently, a healthier organism.”

Using animal models, Dr. Scherer and his team, with first author, Dr. Ingrid Wernstedt Asterholm, former Assistant Instructor at UT Southwestern and current Assistant Professor at the University of Gothenburg in Sweden, found that suppressing inflammation in fat tissue results in reduced fat expansion and thus leaner mice, even when the animals are fed a high-fat diet.

What Dr. Scherer, holder of the Gifford O. Touchstone, Jr. and Randolph G. Touchstone Distinguished Chair in Diabetes Research, and his team expected to find that the reduced body fat content would lead to improvements in metabolism and a lower incidence of metabolic disease. Unexpectedly, the team found that the lean mice showed symptoms of metabolic disease, such as glucose intolerance.

This result might be because when fat tissue expands, it absorbs excess lipids, preventing them from being deposited in other tissues, such as the liver. Indeed, the animal models showed signs of fatty liver, caused by buildup of fat in liver cells, and a “leaky gut,” caused by disruption of the gut wall.

“What our research shows is that we need some localized inflammation to remodel our fat tissue and to prevent metabolic diseases such as fatty liver,” said Dr. Asterholm. “This finding may explain in part why anti-inflammatory medicines have so far not been successful as anti-diabetic treatments. The effects of interventions that promote local low-level inflammation in fat tissue remain to be determined.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

3-D Atomic Structure of Cholesterol Transporter
Researchers at UTSW have determined the 3-D atomic structure of a human sterol transporter that helps maintain cholesterol balance.
Tuesday, May 31, 2016
New $17 Million Cryo-Electron Microscope Center Provides Extraordinary Views
Institute has announced opening of a new $17 million cryo-EM facility housing a unique collection of instruments that researchers can use to view 3-D images of objects.
Thursday, May 12, 2016
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
Friday, May 06, 2016
Enzyme Link Between Excessive Heart Muscle Growth, Cancer Growth
Researchers at UTSW have found that the drugs currently used to inhibit these enzymes in cancer may also be effective in treating enlargement of the heart muscle.
Saturday, April 16, 2016
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Friday, April 08, 2016
A Metabolic Twist that Drives Cancer Survival
A novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells has been identified.
Friday, April 08, 2016
Novel Metabolic Twist that Drives Cancer Survival
Researchers at CRI at UT Southwestern have identified a novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells.
Thursday, April 07, 2016
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
Thursday, March 31, 2016
Mutation That Causes Rare Disease
A mutation has been discovered that causes a rare systemic disorder known as XLPDR and confirmed a role for nucleic acids in immune function.
Tuesday, March 29, 2016
Promoting Liver Tissue Regeneration
Researchers at CRI have reported that inactivating a certain protein-coding gene promotes liver tissue regeneration in mammals.
Saturday, March 26, 2016
Lupus Study Shows Precision Medicine’s Potential to Define the Genetics of Autoimmune Disease
Researchers at UT Southwestern have used next-generation DNA sequencing technology to identify more than 1,000 gene variants that affect susceptibility to SLE.
Saturday, March 19, 2016
Researchers Find New Cytoplasmic Role
Researchers at UT Southwestern Medical Center have found new cytoplasmic role for proteins linked to neurological diseases, cancers.
Friday, March 18, 2016
Researchers’ Work Shines LIGHT on how to Improve Cancer Immunotherapy
Researchers at UT Southwestern Medical Center have reported a strategy to make a major advancement in cancer treatment.
Thursday, March 17, 2016
UTSW Researchers Build Powerful 3-D Microscope, Create Images Of Cancer Cells
Researchers at UTSW have designed a microscope capable of creating high-resolution, 3-D images of living cancer cells in realistic and controlled microenvironments.
Friday, February 26, 2016
Pcsk9-Inhibitor Drug Class That Grew out of UTSW Research Becomes a Game-Changer for Patient
Researchers at UTSW have developed a new pcsk9-inhibitor drug class that effective in reduced the high cholesterol level.
Friday, February 26, 2016
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
A New Way Out for Stem Cells
Researchers at North Carolina State University have discovered that therapeutic stem cells exit the bloodstream in a different manner than was previously thought.
One Giant Leap for the Future of Safe Drug Delivery
Sheffield engineers make major breakthrough in developing silk ‘micro-rockets’ that can be used safely in biological environments.
Designing Potential AIDS Vaccine Candidates
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Anticancer Drug Stops Ebola Virus Molecule in its Tracks
A team of scientists from the University of Oxford have successfully mapped the structure of the Ebola virus molecule that drives the attack strategy and leads to fatal infections in humans.
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!