Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Catalysts That Mimic Enzymes Could Revolutionize Pharmaceutical Manufacturing

Published: Tuesday, June 24, 2014
Last Updated: Tuesday, June 24, 2014
Bookmark and Share
Structures made of polymer chains allow the catalysts to work in water.

Organic catalysts are essential for a number of industrial applications, but their inability to work within the same system or in water means that their efficiency is somewhat limited.

Researchers from the Eindhoven University of Technology believe that they may have solved this problem by taking a leaf out of the structure of nature’s own catalysts - enzymes. This could help to make industrial processes such as drug manufacturing both faster and cheaper.

Enzymes are highly selective and effective catalysts, used both in the body and for industrial applications. Their well-defined, compartmentalized three-dimensional structures mean that their active sites are very specific for their particular substrates, making enzyme catalysis extremely efficient.

A crucial characteristic of enzymes is that their outsides are hydrophilic, allowing them to work in the watery environment of the body, while the insides - where the active site is situated - are hydrophobic.

Catalysts used in organic chemistry, on the other hand, are quite different to enzymes. They are typically much smaller molecules that do not have large three-dimensional structures around them, and thus tend to be much less selective. However, it is often the case that these catalysts can stimulate reactions that enzymes cannot.

Is there a way to get the best of both worlds? Dr Anja Palmans of the Eindhoven University of Technology thinks so. “We can mimic the three-dimensional structure of an enzyme using polymer chains,” she explains. “Using what is known as a supramolecular recognition unit, we can fold these chains into compartmentalized architectures much similar to enzymes, which we can then insert a catalytic core into. The folded polymer chain will have a hydrophilic outer surface similar to an enzyme, allowing the synthetic catalyst to work in water.”

The possibilities opened up by this research are numerous. Enzyme-like activity in a completely synthetic system could be used for reaction cascades in which multiple reactions are occurring at once in the same environment.

“When making drugs, for example, the current process involves carrying out one reaction, isolating the product and then purifying the product before moving on to the next reaction and repeating the whole process,” explains Palmans. “This is because standard organic catalysts tend to inhibit or alter each other’s activity and so cannot be used within the same system.”

“However, with these synthetic catalysts the active site is shielded and so they do not interfere with each other. This allows one to have a system in which a number of reactions can be happening simultaneously within a single procedure.”

The Eindhoven University of Technology has been the base of this research, providing a unique multidisciplinary environment that has been fundamental to the success of the work, according to Palmans. “The institute we work in, the Institute for Complex Molecular Systems, was specifically created so that researchers from a number of different disciplines can work within the same building,” she says. “We have polymer chemists to work with the polymer chains, organic chemists to develop the catalysts and supramolecular recognition units, polymer physicists to aid our understanding of the folding and to bring complex methods of analysis, as well as mathematicians who utilize their knowledge of modelling.”

The first experiments on cascade catalytic systems are now running, but the next step will be to relate the structure of the polymers back to the catalytic activity. “We can now shield the catalysts within the polymer; that has been proven,” says Palmans, “but what we really want to do now is to get back to design principals so that we can improve the levels of catalysis. The mathematicians we are working with will be crucial for this step, as their knowledge of models will allow us to work on molecular design.”

It will be another few years before the final results of this intriguing research are published, and it could be that it helps to revolutionize the use of organic catalysts.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Preventing "Friendly Fire" in the Pancreas
Researchers inhibit process that leads to the body attacking its own insulin-producing cells.
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Nanomedicine for Breast Cancer Treatment
Using nanoparticles measuring only billionths of a meter in size, doctors are able to deliver drug molecules directly to the affected tissue.
MRSA Uses Decoys to Evade a Last-Resort Antibiotic
Researchers at Imperial College London have discovered that MRSA releases decoy molecules that allow them to escape being killed by the antibiotic.
MRIs for Fetal Health
Algorithm could help analyze fetal scans to determine whether interventions are warranted.
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos