Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Find Gene Critical for Development of Brain Motor Centre

Published: Tuesday, June 24, 2014
Last Updated: Tuesday, June 24, 2014
Bookmark and Share
The team describes the Snf2h gene, which is found in our brain's neural stem cells and functions as a master regulator.

In a report published in Nature Communications, an Ottawa-led team of researchers describe the role of a specific gene, called Snf2h, in the development of the cerebellum. Snf2h is required for the proper development of a healthy cerebellum, a master control centre in the brain for balance, fine motor control and complex physical movements.

Athletes and artists perform their extraordinary feats relying on the cerebellum. As well, the cerebellum is critical for the everyday tasks and activities that we perform, such as walking, eating and driving a car. By removing Snf2h, researchers found that the cerebellum was smaller than normal, and balance and refined movements were compromised.

Led by Dr. David Picketts, a senior scientist at the Ottawa Hospital Research Institute and professor in the Faculty of Medicine at the University of Ottawa, the team describes the Snf2h gene, which is found in our brain's neural stem cells and functions as a master regulator. When they removed this gene early on in a mouse's development, its cerebellum only grew to one-third the normal size. It also had difficulty walking, balancing and coordinating its movements, something called cerebellar ataxia that is a component of many neurodegenerative diseases.

"As these cerebellar stem cells divide, on their journey toward becoming specialized neurons, this master gene is responsible for deciding which genes are turned on and which genes are packed tightly away," said Dr. Picketts. "Without Snf2h there to keep things organized, genes that should be packed away are left turned on, while other genes are not properly activated. This disorganization within the cell’s nucleus results in a neuron that doesn't perform very well—like a car running on five cylinders instead of six."

The cerebellum contains roughly half the neurons found in the brain. It also develops in response to external stimuli. So, as we practice tasks, certain genes or groups of genes are turned on and off, which strengthens these circuits and helps to stabilize or perfect the task being undertaken. The researchers found that the Snf2h gene orchestrates this complex and ongoing process. These master genes, which adapt to external cues to adjust the genes they turn on and off, are known as epigenetic regulators.

"These epigenetic regulators are known to affect memory, behaviour and learning," said Dr. Picketts. "Without Snf2h, not enough cerebellar neurons are produced, and the ones that are produced do not respond and adapt as well to external signals. They also show a progressively disorganized gene expression profile that results in cerebellar ataxia and the premature death of the animal."

There are no studies showing a direct link between Snf2h mutations and diseases with cerebellar ataxia, but Dr. Picketts added that it "is certainly possible and an interesting avenue to explore."

In 2012, Developmental Cell published a paper by Dr. Picketts' team showing that mice lacking the sister gene Snf2l were completely normal, but had larger brains, more cells in all areas of the brain and more actively dividing brain stem cells. The balance between Snf2l and Snf2h gene activity is necessary for controlling brain size and for establishing the proper gene expression profiles that underlie the function of neurons in different regions, including the cerebellum.

This research was funded by the Canadian Institutes of Health Research and the U.S. National Institutes of Health.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Using Mathematical Modelling in the Fight Against Cancer
Different treatments and genetic modifications might allow cancer-killing, oncolytic viruses to overcome the natural defences that cancer cells use.
Thursday, June 20, 2013
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!