Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Collaboration Leads to Possible Shortcut to New Drugs

Published: Thursday, June 26, 2014
Last Updated: Thursday, June 26, 2014
Bookmark and Share
The reaction, reported in Science, demonstrates how a carboxylic acid can be transformed into a very reactive site through use of a novel photoredox catalyst.

This past January, Derek Ahneman, a graduate student in the lab of Abigail Doyle, a Princeton University associate professor of chemistry, began work on an ambitious new project: he proposed the merger of two areas of research to enable a powerful reaction that neither could broadly achieve on its own.

One field, which is the Doyle research group's domain, was nickel catalysis, wherein nickel squeezes in and out of chemical bonds to bring molecules together. The other field was photoredox catalysis, which uses light to initiate a series of unique bond-breaking and bond-making events one electron at a time. This type of catalysis is the research focus ofDavid MacMillan, the James S. McDonnell Distinguished University Professor of Chemistry and department chair at Princeton, whose laboratory is a leader in the field and happens to occupy the same floor at the Frick Chemistry Laboratory.

"We tried it, got a hit and ran down the hallway to talk with Dave," Doyle said. It turns out MacMillan's lab had come up with a very similar idea and had also gotten initial results, so at that point a natural collaboration emerged, she said.

Jointly reported June 5 in the journal Science, the reaction presented a direct bond between traditionally unreactive coupling partners, a difficult connection to make up to this point. This bond formation provides an excellent shortcut for chemists as they construct and test thousands of molecules to find new drugs.

MacMillan likened their discovery to finding a trapdoor that led to a basement full of gold. "You still have to figure out how to get all the gold out of the basement, but it's a great thing that you found the trapdoor," he said.

The reaction was made possible by the labs' two different catalysts, which are small molecules that react to form the desired bonds then return to their original form and repeat the process. Exposing the photoredox catalyst developed in the MacMillan lab to light-emitting diodes (LEDs) or even household light bulbs provides enough energy to make them extraordinarily reactive. These catalysts become destabilized and can add or remove an electron from another molecule that goes on to form new bonds.

"Chemists are starting to appreciate this field because it allows you to do things that were effectively impossible," MacMillan said.

The nickel catalyst that has been extensively studied by the Doyle lab is well known for its low cost and ability to selectively couple certain molecules. Nickel catalysis has become an important part of the chemist's tool kit because of the predictability of these methods, Ahneman said.

In the reaction reported in Science, the photoredox catalyst transformed a carboxylic acid — a simple and abundant carbon-based compound found in numerous materials such as soap and steroids — into a very reactive site on the molecule. That site was then intercepted by the nickel catalyst and coupled to an arene, which is a ring-shaped molecule that is frequently present in potential drug candidates. The end result was a bond neither catalyst could efficiently construct by itself.

The photoredox catalysts introduced the carboxylic acids as coupling partners, molecules that had been beyond the reach of nickel catalysts. Meanwhile, nickel reliably delivered arene coupling partners with a variety of molecules appended to it, expanding the options available to photoredox catalysts, which were previously limited to a subset of arenes attached to groups that craved electrons.

"I think it's remarkable that you can have two catalysts in the reaction, both performing the roles that they're best at and yet are still compatible with one another," Doyle said. 

The researchers also demonstrated the unprecedented coupling between an arene and dimethylaniline, a compound that lacks the carboxylic acid group. This result opens the door to bond formations created directly from typically unreactive carbon-hydrogen bonds, further freeing chemists to build useful molecules.

"What we found really powerful about this work is not just the combination of photoredox and nickel catalysis to accomplish one particular reaction, but that it enables a whole platform of new reactions," said Jack Terrett, a graduate student in the MacMillan lab and co-author on the article.

In exploring the scope of the reaction, the researchers were impressed by both catalysts' ability to perform consistently regardless of the presence of a wide range of groups. Within a couple of weeks the research teams had used their reaction to make more than two-dozen products in high yields.

"It was through our discussions that we were able to make this happen so fast," said Zhiwei Zuo, a postdoctoral researcher in the MacMillan lab and lead author on the paper. By sharing their expertise, the researchers were able to gain insight into the mechanism allowing them to quickly progress the project.

Moving forward, the two labs plan to stay in close contact but develop the chemistry independently, allowing them to cover more ground.

The paper, "Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp3-carbons with aryl halides," was published online by Science June 5. 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Quick, Early Test For Ebola Could Prevent Epidemics
Researchers from Princeton University are collaborating with U.S. government labs to develop a more rapid, accurate and inexpensive test for the Ebola virus with the aim of identifying infections before carriers become symptomatic and contagious.
Wednesday, July 06, 2016
Scoliosis Linked to Disruptions in Spinal Fluid Flow
A new study in zebrafish suggests that irregular fluid flow through the spinal column brought on by gene mutations is linked to a type of scoliosis that can affect humans during adolescence.
Tuesday, June 14, 2016
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Thursday, May 26, 2016
Photoredox Catalyst Unlocks New Pathways for Nickel Chemistry
Using a light-activated catalyst, researchers have unlocked a new pathway in nickel chemistry to construct carbon-oxygen (C-O) bonds that would be highly valuable to pharmaceutical and agrochemical industries.
Friday, August 14, 2015
Solving Streptide from Structure to Biosynthesis
Researchers reveal new information about how bacteria communicate via the protein, streptide.
Monday, May 18, 2015
Measles Virus Said to Suppress Immune System for up to Three Years
New research suggests measles can suppress children’s immune systems for up to three years following infection, leaving them susceptible to a host of other deadly diseases.
Monday, May 11, 2015
A Gene That Shaped The Evolution Of Darwin's Finches
Researchers from Princeton University and Uppsala University in Sweden have identified a gene in the Galápagos finches studied by English naturalist Charles Darwin that influences beak shape and that played a role in the birds' evolution from a common ancestor more than 1 million years ago.
Thursday, February 12, 2015
A Single Cell Smashes and Rebuilds Its Own Genome
Life can be so intricate and novel that even a single cell can pack a few surprises, according to a study led by Princeton University researchers.
Tuesday, September 09, 2014
Wild Sheep Show Benefits of Putting Up With Parasites
Researchers used 25 years of data on a population of wild sheep living on an island in northwest Scotland to assess the evolutionary importance of infection tolerance.
Monday, August 18, 2014
Even if Emissions Stop, Carbon Dioxide Could Warm Earth for Centuries
Study suggests that it might take a lot less carbon than previously thought to reach the global temperature scientists deem unsafe.
Monday, November 25, 2013
Small Bits of Genetic Material Fight Cancer's Spread
A class of molecules called microRNAs may offer cancer patients two ways to combat their disease.
Monday, October 21, 2013
Physicists, Biologists Unite to Expose How Cancer Spreads
New study has found that cancer cells that can break out of a tumor are more aggressive and nimble than nonmalignant cells.
Thursday, May 02, 2013
Schmidt Fund Awards to Advance Innovations in Drug Therapy and Search for Planets
Two Princeton University research projects have been selected to receive grants from Princeton's Eric and Wendy Schmidt Transformative Technology Fund.
Friday, April 26, 2013
Study Casts Light on Deadly Immune Response
Volunteers’ extreme immune response helps create model for immune signals.
Tuesday, March 19, 2013
Parasite Metabolism can Foretell Disease Ranges under Climate Change
Knowing the temperatures that viruses, bacteria, worms and all other parasites need to grow and survive could help determine the future range of infectious diseases under climate change.
Thursday, February 28, 2013
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Atmosphere Acidity Minimised to Preindustrial Levels
Sheet ice study shows acidic pollution of the atmosphere has now almost returned to preindustrial levels.
New Therapeutic Target for Crohn’s Disease
A promising new target for drugs that treat IBD has been identified along with a possible biomarker for IBD severity.
Culex Mosquitoes Do Not Transmit Zika
A study of the Culex species mosquito appears to show that the species does not transmit Zika virus.
Uncovering Water Bear Resilience
A protein identified in water bears can protect DNA of human cells from lethal doses of radiation damage.
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Researchers Find Fungus-Fighting Compound
A compound has been identifed that blocks growth of a fungus responsible for lung infections and allergic reactions.
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!