Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Names New Clinical Sites in Undiagnosed Diseases Network

Published: Wednesday, July 02, 2014
Last Updated: Wednesday, July 02, 2014
Bookmark and Share
Four-year, $43 million initiative engages broad expertise in study of mystery conditions.

The National Institutes of Health has awarded grants to six medical centers around the country to select from the most difficult-to-solve medical cases and together develop effective approaches to diagnose them. The clinical sites will conduct clinical evaluation and scientific investigation in cases that involve patients with prolonged undiagnosed conditions.

Each clinical site will contribute local medical expertise to the NIH Undiagnosed Diseases Network (UDN). The network includes and is modeled after an NIH pilot program that has enrolled people with intractable medical conditions from nearly every state, the District of Columbia and seven foreign countries. The network builds on a program at the NIH Clinical Center in Bethesda, Md., that for the past six years has evaluated hundreds of patients and provided many diagnoses, often using genomic approaches, for rare conditions.

“Newly developed methods for genome sequencing now provide us amazingly powerful approaches for deciphering the causes of rare undiagnosed conditions,” said Eric D. Green, M.D., Ph.D., director of the National Human Genome Research Institute. “Along with robust clinical evaluations, genomics will play a central role in the UDN’s mission.” Dr. Green and Story Landis, Ph.D., director of the National Institute of Neurological Diseases and Stroke, co-chair the UDN working group.

Undiagnosed diseases are conditions that even skilled physicians cannot diagnose despite extensive clinical investigation. They may not be recognized by doctors because they are rarely seen, are previously undescribed, or are rare forms of more common diseases.

The NIH Common Fund awarded four-year grants of approximately $7.2 million (pending available funds) to each of the six medical centers around the country. James M. Anderson, M.D., Ph.D., director of the NIH Division of Program Coordination, Planning, and Strategic Initiatives (DPCPSI), announced in an NIH telebriefing that the six newly awarded sites join a clinical site already established at NIH in pursuing cutting-edge diagnoses. In addition, this past December, NIH selected Harvard Medical School as the UDN Coordinating Center for the multi-institution network.

“The NIH Undiagnosed Diseases Network has the potential to transform medicine and serve as a catalyst for new discoveries,” said Dr. Anderson. “It is an ideal NIH Common Fund program—the only one focused on diagnoses of rare disorders.”

The following institutions were awarded grants to establish UDN clinical sites:

Baylor College of Medicine, Houston; Principal Investigator: Brendan H.L. Lee, M.D., Ph.D.

Boston Children's Hospital, Brigham and Women's Hospital, and Massachusetts General Hospital, Boston; Principal Investigator: Joseph Loscalzo, M.D., Ph.D.

Duke University, Durham, North Carolina; Principal Investigators: Vandana Shashi, M.D. , and David B. Goldstein, Ph.D.

Stanford University, Stanford, California; Principal Investigators: Euan A. Ashley, M.D., D.Phil., Jonathan Bernstein, M.D., Ph.D., and Paul Graham Fisher, M.D.

University of California, Los Angeles; Principal Investigators: Eric J. Vilain, M.D., Ph.D., Katrina M. Dipple, M.D., Ph.D., Stanley Nelson, M.D., and Christina Palmer, C.G.C., Ph.D.

Vanderbilt University Medical Center, Nashville; Principal Investigators: John A. Phillips, III, M.D., and John H. Newman, M.D.

“This type of program can invigorate a medical center anywhere in the country and in the world,” said William A. Gahl, M.D., Ph.D., clinical director at the National Human Genome Research Institute (NHGRI), director of the NIH-based Undiagnosed Diseases Program (UDP) and co-coordinator of the UDN working group. “Often, patients have a lot of physical complaints and no objective diagnoses. Our goal is to use the latest tools to make a diagnosis that spans the clinical, pathological and biochemical spectrum to uncover the basic genetic defect.”

Since 2008, the UDP has explored this fascinating area of medical research and acquired practical insights in the process of enrolling approximately 600 undiagnosed children and adults in its clinical protocols. The multidisciplinary clinical and research team diagnosed approximately 100 patients (20-25 percent of those evaluated), discovered two unknown diseases and identified 15 genes not previously associated with any other human disease. A combination of genomic and clinical analyses contributed to the diagnoses.

By including an additional six clinical sites, the NIH UDN will both draw upon the unique expertise of new clinical research groups and cultivate opportunities for collaboration among a larger group of expert laboratory and clinical investigators. Physicians within the network will collect and share high-quality clinical and laboratory data, including genomic information, clinical observations and documentation of environmental exposures. They also will benefit from common protocols designed to improve the level of diagnosis and care for patients with undiagnosed diseases.

“The UDN will look at diseases across all clinical specialties using new tools and methods of analysis for the identification of new diseases,” said Anastasia L. Wise, Ph.D., a program director in NHGRI's Division of Genomic Medicine and co-coordinator of the UDN working group that oversees the development and implementation of the UDN. “The network will facilitate collaboration and shared use of genomic tools among the sites.” 

Based on the NIH UDP experience, the UDN Coordinating Center at Harvard Medical School has begun paving the way for the new UDN clinical sites to begin accepting patients. Among the coordinating efforts are the preparation of draft protocols and operating guidelines, and the definition of an initial framework of common practices across the network. The network will share systems for data collection and develop common approaches to patient selection, evaluation and diagnosis.

Each new clinical site may have variations in handling health insurance coverage for clinical testing and care. However, no patient will be turned away from participation in the UDN based on lack of health insurance coverage.

“We believe that there is a substantial unmet demand for the diagnoses of conditions that have perplexed skillful physicians,” said Isaac Kohane, M.D., Ph.D., professor of pediatrics at Harvard Medical School and Boston Children’s Hospital and principal investigator of the Coordinating Center. “We want to address inquiries from physicians and patients throughout the country who require these services and, in doing so, create a 21st century model for diagnosis and treatment in this genomic and information-intensive era.”

UDN investigators will share genomic data from UDN patients with the research community through multiple public repositories. Network-wide data sharing will observe standards of patient privacy, confidentiality and management of health information.

The network will start up and test its operating procedures during its first year. It will progressively expand recruitment of patients so that by the summer of 2017, the rate of admissions at each new clinical site will be about 50 patients per year. For a period this summer, referrals from clinicians on behalf of undiagnosed patients may continue to be made through the existing NIH application pipeline.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
Young South African Women can Adhere to Daily PrEP Regimen as HIV Prevention
NIH-funded study finds men in Bangkok, Harlem also successful in taking daily dose.
Saturday, July 25, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Early Antiretroviral Therapy Prevents Non-AIDS Outcomes in HIV-infected People
NIH-supported findings illustrate manifold benefit of therapy.
Tuesday, July 21, 2015
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Saturday, July 18, 2015
House Votes in Favor of Bill Boosting NIH Funding
The US House of Representatives today overwhelmingly voted in favor of a bill that would increase funding to the NIH by about $10 billion, help speed the development of new drugs, and advance precision medicine initiatives.
Monday, July 13, 2015
NIH-funded Vaccine for West Nile Virus Enters Human Clinical Trials
Enrollment is expected to be completed by December 2015.
Tuesday, July 07, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Boys More Likely to Have Antipsychotics Prescribed, Regardless of Age
NIH-funded study is the first look at antipsychotic prescriptions patterns in the U.S.
Thursday, July 02, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
New Medication for Alcohol Use Disorder
NIH begins clinical trial investigating a potential treatment for alcohol use disorder.
Friday, June 26, 2015
NIH Begins Clinical Trial of New Medication for Alcohol Use Disorder
Clinical trial will evaluate the safety and effectiveness of gabapentin enacarbil in treating alcohol use disorder.
Friday, June 26, 2015
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!