Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH Names New Clinical Sites in Undiagnosed Diseases Network

Published: Wednesday, July 02, 2014
Last Updated: Wednesday, July 02, 2014
Bookmark and Share
Four-year, $43 million initiative engages broad expertise in study of mystery conditions.

The National Institutes of Health has awarded grants to six medical centers around the country to select from the most difficult-to-solve medical cases and together develop effective approaches to diagnose them. The clinical sites will conduct clinical evaluation and scientific investigation in cases that involve patients with prolonged undiagnosed conditions.

Each clinical site will contribute local medical expertise to the NIH Undiagnosed Diseases Network (UDN). The network includes and is modeled after an NIH pilot program that has enrolled people with intractable medical conditions from nearly every state, the District of Columbia and seven foreign countries. The network builds on a program at the NIH Clinical Center in Bethesda, Md., that for the past six years has evaluated hundreds of patients and provided many diagnoses, often using genomic approaches, for rare conditions.

“Newly developed methods for genome sequencing now provide us amazingly powerful approaches for deciphering the causes of rare undiagnosed conditions,” said Eric D. Green, M.D., Ph.D., director of the National Human Genome Research Institute. “Along with robust clinical evaluations, genomics will play a central role in the UDN’s mission.” Dr. Green and Story Landis, Ph.D., director of the National Institute of Neurological Diseases and Stroke, co-chair the UDN working group.

Undiagnosed diseases are conditions that even skilled physicians cannot diagnose despite extensive clinical investigation. They may not be recognized by doctors because they are rarely seen, are previously undescribed, or are rare forms of more common diseases.

The NIH Common Fund awarded four-year grants of approximately $7.2 million (pending available funds) to each of the six medical centers around the country. James M. Anderson, M.D., Ph.D., director of the NIH Division of Program Coordination, Planning, and Strategic Initiatives (DPCPSI), announced in an NIH telebriefing that the six newly awarded sites join a clinical site already established at NIH in pursuing cutting-edge diagnoses. In addition, this past December, NIH selected Harvard Medical School as the UDN Coordinating Center for the multi-institution network.

“The NIH Undiagnosed Diseases Network has the potential to transform medicine and serve as a catalyst for new discoveries,” said Dr. Anderson. “It is an ideal NIH Common Fund program—the only one focused on diagnoses of rare disorders.”

The following institutions were awarded grants to establish UDN clinical sites:

Baylor College of Medicine, Houston; Principal Investigator: Brendan H.L. Lee, M.D., Ph.D.

Boston Children's Hospital, Brigham and Women's Hospital, and Massachusetts General Hospital, Boston; Principal Investigator: Joseph Loscalzo, M.D., Ph.D.

Duke University, Durham, North Carolina; Principal Investigators: Vandana Shashi, M.D. , and David B. Goldstein, Ph.D.

Stanford University, Stanford, California; Principal Investigators: Euan A. Ashley, M.D., D.Phil., Jonathan Bernstein, M.D., Ph.D., and Paul Graham Fisher, M.D.

University of California, Los Angeles; Principal Investigators: Eric J. Vilain, M.D., Ph.D., Katrina M. Dipple, M.D., Ph.D., Stanley Nelson, M.D., and Christina Palmer, C.G.C., Ph.D.

Vanderbilt University Medical Center, Nashville; Principal Investigators: John A. Phillips, III, M.D., and John H. Newman, M.D.

“This type of program can invigorate a medical center anywhere in the country and in the world,” said William A. Gahl, M.D., Ph.D., clinical director at the National Human Genome Research Institute (NHGRI), director of the NIH-based Undiagnosed Diseases Program (UDP) and co-coordinator of the UDN working group. “Often, patients have a lot of physical complaints and no objective diagnoses. Our goal is to use the latest tools to make a diagnosis that spans the clinical, pathological and biochemical spectrum to uncover the basic genetic defect.”

Since 2008, the UDP has explored this fascinating area of medical research and acquired practical insights in the process of enrolling approximately 600 undiagnosed children and adults in its clinical protocols. The multidisciplinary clinical and research team diagnosed approximately 100 patients (20-25 percent of those evaluated), discovered two unknown diseases and identified 15 genes not previously associated with any other human disease. A combination of genomic and clinical analyses contributed to the diagnoses.

By including an additional six clinical sites, the NIH UDN will both draw upon the unique expertise of new clinical research groups and cultivate opportunities for collaboration among a larger group of expert laboratory and clinical investigators. Physicians within the network will collect and share high-quality clinical and laboratory data, including genomic information, clinical observations and documentation of environmental exposures. They also will benefit from common protocols designed to improve the level of diagnosis and care for patients with undiagnosed diseases.

“The UDN will look at diseases across all clinical specialties using new tools and methods of analysis for the identification of new diseases,” said Anastasia L. Wise, Ph.D., a program director in NHGRI's Division of Genomic Medicine and co-coordinator of the UDN working group that oversees the development and implementation of the UDN. “The network will facilitate collaboration and shared use of genomic tools among the sites.” 

Based on the NIH UDP experience, the UDN Coordinating Center at Harvard Medical School has begun paving the way for the new UDN clinical sites to begin accepting patients. Among the coordinating efforts are the preparation of draft protocols and operating guidelines, and the definition of an initial framework of common practices across the network. The network will share systems for data collection and develop common approaches to patient selection, evaluation and diagnosis.

Each new clinical site may have variations in handling health insurance coverage for clinical testing and care. However, no patient will be turned away from participation in the UDN based on lack of health insurance coverage.

“We believe that there is a substantial unmet demand for the diagnoses of conditions that have perplexed skillful physicians,” said Isaac Kohane, M.D., Ph.D., professor of pediatrics at Harvard Medical School and Boston Children’s Hospital and principal investigator of the Coordinating Center. “We want to address inquiries from physicians and patients throughout the country who require these services and, in doing so, create a 21st century model for diagnosis and treatment in this genomic and information-intensive era.”

UDN investigators will share genomic data from UDN patients with the research community through multiple public repositories. Network-wide data sharing will observe standards of patient privacy, confidentiality and management of health information.

The network will start up and test its operating procedures during its first year. It will progressively expand recruitment of patients so that by the summer of 2017, the rate of admissions at each new clinical site will be about 50 patients per year. For a period this summer, referrals from clinicians on behalf of undiagnosed patients may continue to be made through the existing NIH application pipeline.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Drug Used To Treat HIV Linked to Lower Bone Mass in Newborns
NIH study finds mothers’ use of tenofovir tied to lower bone mineral content in babies.
Wednesday, September 30, 2015
Repairing Nerve Pathways With 3-D Printing
A novel 3-D printing approach was used to create custom scaffolds that helped damaged rat nerves regenerate and improved the animals’ ability to walk.
Tuesday, September 29, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Launches Landmark Study On Substance Use And Adolescent Brain Development
Thirteen grants awarded to look at cognitive and social development in approximately 10,000 children.
Monday, September 28, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Grants Awarded to Explore the Genome’s Regulatory Regions that Affect Disease Risk
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Tuesday, September 22, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Scientific News
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Horse Illness Shares Signs of Human Disease
Horses with a rare nerve condition have similar signs of disease as people with conditions such as Alzheimer’s, a study has found.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos