Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH Names New Clinical Sites in Undiagnosed Diseases Network

Published: Wednesday, July 02, 2014
Last Updated: Wednesday, July 02, 2014
Bookmark and Share
Four-year, $43 million initiative engages broad expertise in study of mystery conditions.

The National Institutes of Health has awarded grants to six medical centers around the country to select from the most difficult-to-solve medical cases and together develop effective approaches to diagnose them. The clinical sites will conduct clinical evaluation and scientific investigation in cases that involve patients with prolonged undiagnosed conditions.

Each clinical site will contribute local medical expertise to the NIH Undiagnosed Diseases Network (UDN). The network includes and is modeled after an NIH pilot program that has enrolled people with intractable medical conditions from nearly every state, the District of Columbia and seven foreign countries. The network builds on a program at the NIH Clinical Center in Bethesda, Md., that for the past six years has evaluated hundreds of patients and provided many diagnoses, often using genomic approaches, for rare conditions.

“Newly developed methods for genome sequencing now provide us amazingly powerful approaches for deciphering the causes of rare undiagnosed conditions,” said Eric D. Green, M.D., Ph.D., director of the National Human Genome Research Institute. “Along with robust clinical evaluations, genomics will play a central role in the UDN’s mission.” Dr. Green and Story Landis, Ph.D., director of the National Institute of Neurological Diseases and Stroke, co-chair the UDN working group.

Undiagnosed diseases are conditions that even skilled physicians cannot diagnose despite extensive clinical investigation. They may not be recognized by doctors because they are rarely seen, are previously undescribed, or are rare forms of more common diseases.

The NIH Common Fund awarded four-year grants of approximately $7.2 million (pending available funds) to each of the six medical centers around the country. James M. Anderson, M.D., Ph.D., director of the NIH Division of Program Coordination, Planning, and Strategic Initiatives (DPCPSI), announced in an NIH telebriefing that the six newly awarded sites join a clinical site already established at NIH in pursuing cutting-edge diagnoses. In addition, this past December, NIH selected Harvard Medical School as the UDN Coordinating Center for the multi-institution network.

“The NIH Undiagnosed Diseases Network has the potential to transform medicine and serve as a catalyst for new discoveries,” said Dr. Anderson. “It is an ideal NIH Common Fund program—the only one focused on diagnoses of rare disorders.”

The following institutions were awarded grants to establish UDN clinical sites:

Baylor College of Medicine, Houston; Principal Investigator: Brendan H.L. Lee, M.D., Ph.D.

Boston Children's Hospital, Brigham and Women's Hospital, and Massachusetts General Hospital, Boston; Principal Investigator: Joseph Loscalzo, M.D., Ph.D.

Duke University, Durham, North Carolina; Principal Investigators: Vandana Shashi, M.D. , and David B. Goldstein, Ph.D.

Stanford University, Stanford, California; Principal Investigators: Euan A. Ashley, M.D., D.Phil., Jonathan Bernstein, M.D., Ph.D., and Paul Graham Fisher, M.D.

University of California, Los Angeles; Principal Investigators: Eric J. Vilain, M.D., Ph.D., Katrina M. Dipple, M.D., Ph.D., Stanley Nelson, M.D., and Christina Palmer, C.G.C., Ph.D.

Vanderbilt University Medical Center, Nashville; Principal Investigators: John A. Phillips, III, M.D., and John H. Newman, M.D.

“This type of program can invigorate a medical center anywhere in the country and in the world,” said William A. Gahl, M.D., Ph.D., clinical director at the National Human Genome Research Institute (NHGRI), director of the NIH-based Undiagnosed Diseases Program (UDP) and co-coordinator of the UDN working group. “Often, patients have a lot of physical complaints and no objective diagnoses. Our goal is to use the latest tools to make a diagnosis that spans the clinical, pathological and biochemical spectrum to uncover the basic genetic defect.”

Since 2008, the UDP has explored this fascinating area of medical research and acquired practical insights in the process of enrolling approximately 600 undiagnosed children and adults in its clinical protocols. The multidisciplinary clinical and research team diagnosed approximately 100 patients (20-25 percent of those evaluated), discovered two unknown diseases and identified 15 genes not previously associated with any other human disease. A combination of genomic and clinical analyses contributed to the diagnoses.

By including an additional six clinical sites, the NIH UDN will both draw upon the unique expertise of new clinical research groups and cultivate opportunities for collaboration among a larger group of expert laboratory and clinical investigators. Physicians within the network will collect and share high-quality clinical and laboratory data, including genomic information, clinical observations and documentation of environmental exposures. They also will benefit from common protocols designed to improve the level of diagnosis and care for patients with undiagnosed diseases.

“The UDN will look at diseases across all clinical specialties using new tools and methods of analysis for the identification of new diseases,” said Anastasia L. Wise, Ph.D., a program director in NHGRI's Division of Genomic Medicine and co-coordinator of the UDN working group that oversees the development and implementation of the UDN. “The network will facilitate collaboration and shared use of genomic tools among the sites.” 

Based on the NIH UDP experience, the UDN Coordinating Center at Harvard Medical School has begun paving the way for the new UDN clinical sites to begin accepting patients. Among the coordinating efforts are the preparation of draft protocols and operating guidelines, and the definition of an initial framework of common practices across the network. The network will share systems for data collection and develop common approaches to patient selection, evaluation and diagnosis.

Each new clinical site may have variations in handling health insurance coverage for clinical testing and care. However, no patient will be turned away from participation in the UDN based on lack of health insurance coverage.

“We believe that there is a substantial unmet demand for the diagnoses of conditions that have perplexed skillful physicians,” said Isaac Kohane, M.D., Ph.D., professor of pediatrics at Harvard Medical School and Boston Children’s Hospital and principal investigator of the Coordinating Center. “We want to address inquiries from physicians and patients throughout the country who require these services and, in doing so, create a 21st century model for diagnosis and treatment in this genomic and information-intensive era.”

UDN investigators will share genomic data from UDN patients with the research community through multiple public repositories. Network-wide data sharing will observe standards of patient privacy, confidentiality and management of health information.

The network will start up and test its operating procedures during its first year. It will progressively expand recruitment of patients so that by the summer of 2017, the rate of admissions at each new clinical site will be about 50 patients per year. For a period this summer, referrals from clinicians on behalf of undiagnosed patients may continue to be made through the existing NIH application pipeline.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Structure of Primary Cannabinoid Receptor is Revealed
The findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol —a primary chemical in marijuana—bind at the CB1 receptor to produce their effects.
Friday, October 21, 2016
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Thursday, October 20, 2016
NIH Contributes to Global Effort to Prevent and Manage Lung Diseases
The large scale trial will measure health benefits of clean cookstoves.
Thursday, October 20, 2016
Untangling Cause Of Memory Loss In Neurodegenerative Diseases
NIH-funded mouse study identifies a possible therapeutic target for a family of disorders.
Tuesday, October 18, 2016
NIH Scientists Uncover Genetic Explanation for Frustrating Syndrome
Researchers at NIH have suggested that the multiple alpha tryptase gene copies might underlie health issues that affect a substantial number of people.
Tuesday, October 18, 2016
Scientists at NIH and Emory Achieve Sustained SIV Remission in Monkeys
The finding suggest that the immune systems of these animals are controlling SIV replication in the absence of antiretroviral therapy.
Friday, October 14, 2016
Untangling a Cause of Memory Loss in Neurodegenerative Diseases
The mouse study identifies a possible therapeutic target for a family of disorders.
Thursday, October 13, 2016
Visual Cortex Plays Role in Plasticity of Eye Movement Reflex
Researchers at NIH have found that the visual cortex region of the brain known to process sensory information plays a vital role in promoting the plasticity of innate, spontaneous eye movements.
Thursday, October 13, 2016
NIH Commits $6.7 M to Advance DNA, RNA Sequencing Technology
"Can you believe they make DNA sequencers the size of staplers?" asked Meni Wanunu, Ph.D. "Ideas that were crazy twenty years ago are now happening!"
Friday, October 07, 2016
Cone Snail Venom Reveals Insulin Insights
Researchers found that a fast-acting insulin from the cone snail can bind and activate the human insulin receptor.
Wednesday, October 05, 2016
DNA Vaccines Protect Monkeys Against Zika Virus
Two experimental Zika virus DNA vaccines developed by NIH scientists protected monkeys against Zika infection.
Wednesday, October 05, 2016
Targeting Cardiovascular Disease Risk Factors May be Important Across a Lifetime
The study suggests efforts to prevent risk factors should extend to those older than 65.
Tuesday, October 04, 2016
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Saturday, October 01, 2016
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
Friday, September 30, 2016
Monkeys Protected by Zika DNA Vaccine
Experimental Zika virus DNA vaccines successfully protected monkeys against Zika infection.
Thursday, September 29, 2016
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
Structure of Primary Cannabinoid Receptor is Revealed
The findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol —a primary chemical in marijuana—bind at the CB1 receptor to produce their effects.
Illumina Contributes to ClinVar Database
The contribution includes variants of all classifications, from pathogenic to benign, identified during interpretation of whole genome sequences generated in the CLIA-certified, CAP-accredited Illumina Clinical Services Laboratory.
Overlooked Molecules Could Revolutionise our Understanding of the Immune System
Researchers have discovered that around one third of all the epitopes displayed for scanning by the immune system are a type known as ‘spliced’ epitopes.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
Signaling Pathway Could Be Key to Improved Osteoporosis Treatment
Inhibition of SIK2 enzyme both stimulates bone formation and reduces bone breakdown in animal model.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos