Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Brain Tumor Invasion Along Blood Vessels May Lead to New Cancer Treatments

Published: Thursday, July 10, 2014
Last Updated: Thursday, July 10, 2014
Bookmark and Share
NIH-funded researchers find brain tumor cells disrupt the brain’s protective barrier, offering potential avenues for therapy.

Invading glioblastoma cells may hijack cerebral blood vessels during early stages of disease progression and damage the brain’s protective barrier, a study in mice indicates. This finding could ultimately lead to new ways to bring about the death of the tumor, as therapies may be able to reach these deadly cells at an earlier time point than was previously thought possible.

This research, published in Nature Communications, was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

Glioblastoma, a type of aggressive brain tumor, is one of the most devastating forms of cancer. These tumors spread quickly and are difficult to treat because the brain protects itself from foreign substances.

The blood-brain barrier (BBB) is designed to stand in the way of harmful materials leaking into the brain and to regulate the transport of important molecules back and forth between the brain and the blood. One component of the BBB is close-fitting connections (called tight junctions) that form seals between the blood vessel’s endothelial cells. There are several other types of cells that cover the blood vessel, including specialized brain cells known as astrocytes, which have extensive projections, called endfeet, that cover 90 percent of the blood vessel surface.

The astrocytic endfeet release molecules that regulate the tight junctions between the endothelial cells. They also release specific chemicals that cause blood vessels to expand or contract, thereby regulating blood flow in the brain. As a whole, the BBB can be viewed as a smart protective wrapping that separates the blood from the brain.

Harald Sontheimer, Ph.D., from the University of Alabama at Birmingham, and his colleagues investigated the interactions between glioblastoma cells, astrocytes and cerebral blood vessels. They used mouse models of glioblastoma, fluorescent dyes and a variety of imaging techniques to see how tumor cells migrate through the brain and interact with other cells and blood vessels.

In the current study, Dr. Sontheimer’s team showed that almost all of the glioblastoma cells outside the main tumor mass were located in the space between the astrocytic endfeet and the blood vessel outer surface. By using the meshwork of small blood vessels as a scaffold, glioblastoma cells were able to migrate along the vessels and extract nutrients from the blood for themselves.

“The vast majority of tumor cells are associated with blood vessels. These cells appear to be using the vessels as highways to travel great distances within the brain,” said Dr. Sontheimer.

In addition, the findings revealed the glioblastoma cells hijacked control over the blood flow by taking it away from the astrocytes. As a result, tight junctions became loose, which led to a breakdown in the BBB. Dr. Sontheimer and his colleagues were surprised that very small groups of tumor cells, even individual cells, were sufficient to weaken the BBB early in the disease process.

“Evidence from our models suggests that early in the disease, invading tumor cells are not completely protected by the blood-brain barrier and may be more vulnerable to drugs delivered to the brain via the blood. If these findings hold true in humans, treatment with anti-invasive agents might be beneficial in newly diagnosed glioblastoma patients,” said Dr. Sontheimer. He added that localized breaches in the BBB may allow regionally precise delivery of drugs to attack tumor cells even in the earliest stage.

“Dr. Sontheimer’s findings provide us with new perspectives on how glioblastoma cells successfully invade within the brain and control blood flow to their advantage. These findings have the potential to change current approaches to treating glioblastoma,” said Jane Fountain, Ph.D., program director in charge of NINDS’ brain tumor portfolio.

Further research is needed to learn more about how the BBB is regulated and how brain tumor cells take over existing vessels to grow and spread. A better understanding of how tumor cells interact with the BBB may increase our ability to treat glioblastoma patients.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Tuesday, June 28, 2016
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Tuesday, June 28, 2016
Rates of Nonmedical Prescription Opioid Use Disorder Double in 10 Years
Researchers at NIH have found that the nonmedical use of prescription opioids has more than doubled among adults in the United States from 2001-2002 to 2012-2013.
Thursday, June 23, 2016
Peanut Allergy Prevention Strategy is Nutritionally Safe
Early-life peanut consumption does not affect duration of breastfeeding or children’s growth and nutrition.
Wednesday, June 22, 2016
NIH Launches Large Study of Pregnant Women in Areas Affected by Zika virus
Researchers at NIH and Fiocruz have begun a study to evaluate the magnitude of health risks that Zika virus infection poses to pregnant women and their developing fetuses and infants.
Wednesday, June 22, 2016
New Imaging Method May Predict Risk of Post-Treatment Brain Bleeding After Stroke
Researchers at NIH have developed technique that provides new insight into stroke.
Tuesday, June 21, 2016
Study Reveals Central Role of Endocannabinoids in Habit Formation
The new study findings point to a previously unknown mechanism in the brain that regulates the transition between goal-directed and habitual behaviors.
Tuesday, June 21, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Prevention May be Essential to Reducing Racial Disparities in Stroke
Researchers at NIH have found study provides clues to differences in stroke deaths between blacks and whites.
Friday, June 03, 2016
NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Thursday, May 26, 2016
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
Wednesday, May 25, 2016
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
A New Way Out for Stem Cells
Researchers at North Carolina State University have discovered that therapeutic stem cells exit the bloodstream in a different manner than was previously thought.
One Giant Leap for the Future of Safe Drug Delivery
Sheffield engineers make major breakthrough in developing silk ‘micro-rockets’ that can be used safely in biological environments.
Designing Potential AIDS Vaccine Candidates
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Anticancer Drug Stops Ebola Virus Molecule in its Tracks
A team of scientists from the University of Oxford have successfully mapped the structure of the Ebola virus molecule that drives the attack strategy and leads to fatal infections in humans.
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!