Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BGI, University of Edinburgh Partner to Synthesize Synthetic Yeast Chromosome

Published: Friday, July 11, 2014
Last Updated: Friday, July 11, 2014
Bookmark and Share
Leading UK and Chinese research institutes have signed a longstanding research collaboration in the area of synthetic biology.

BGI and the University of Edinburgh have signed a collaboration agreement to pursue an ambitious synthetic biology “construction” project worth up to £1Million. The two institutes will team up to synthesize synthetic yeast chromosome VII in the Edinburgh Genome Foundry, recently funded by the UK’s Biotechnology and Biological Sciences Research Council and co-directed by Prof. Susan Rosser and Dr. Patrick Yizhi Cai.

Synthetic biology is a new emerging discipline, which is motivated by advances in molecular cell sciences, systems biology and the advent of two foundational technologies - DNA sequencing and DNA synthesis. The purpose of synthetic biology is to design synthetic biological systems by utilizing systematically engineered micro-organisms for the production of biofuels and drugs, providing a unique opportunity for researchers to study many profound life science questions and generate vital industrial applications.

Faculty members from Centre for Synthetic and Systems Biology (SynthSys) at the University of Edinburgh and at BGI will work together on synthesizing chromosome VII as part of the International Synthetic Yeast Project (Sc2.0).The Sc2.0 PROJECT, initiated by Johns Hopkins University School of Medicine, is the first synthetic eukaryotic genome project. The goal is to recreate the chromosome of yeast, a widely applied industrial microbe, so that it can be manipulated for useful purposes. The two parties will join forces to create an internationally competitive and innovative research team in the field of synthetic biology and work towards a breakthrough in the technology of artificially constructed yeast genome. In the collaboration agreement, the two parties will work towards gaining strategic advantages in automated synthesis of genomes, meeting the demands for cultivating new synthetic biology industries. Synthesized chromosome VII genome’s success various functions will be developed to be widely used in the production of chemicals, energy and food to maintain and enhance human health and the environment.

Dr Patrick Cai, a Chancellor’s Fellow at the University of Edinburgh, is leading the Sc2.0 project at Edinburgh and Yue Shen, BGI’s Synthetic Biology Unit leader, is currently studying for a PhD in Dr. Cai’s lab. Both institutes will benefit from this working relationship to accelerate the research of synthetic yeast.

The University of Edinburgh and BGI signed a memorandum of understanding with the aim to enhance collaborations between three genomics facilities in Edinburgh and BGI earlier this year. This is not the only collaboration between the University of Edinburgh and a Chinese Institute. In June 2014, the University signed a Memorandum of Understanding with Tianjin University around research and teaching in synthetic and systems biology.

Professor Peter Swain, Director of SynthSys says, “As in the UK, synthetic biology is a key area of investment for China and there is a substantial interest in collaboration and knowledge exchange that we are keen to participate in. We are thrilled to be working with the genomics giant BGI on such a landmark project in synthetic biology. ”

"Synthetic biology is a new emerging research field, which provides a unique opportunity for researchers to answer many fundamental questions in the life sciences.. When biological researchers are transitioning from the DNA sequence of an organism to a synthetic genome, researchers will face more challenges and opportunities with synthetic biology," stated Professor Huanming Yang, Chairman of BGI.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Saturday, December 03, 2016
BGI, Imperial and Waters Sign Translational Medicine Agreement
The collaboration brings together three of the leading scientific groups in the field of translational medicine.
Monday, September 15, 2014
BGI and The Vancouver Prostate Centre Partner
Partnership announced to create joint research laboratory for advancement of translational cancer research.
Friday, September 12, 2014
BGI's NGS Products Receive CFDA Approval
These are the first next generation sequencing diagnostic products approved by CFDA.
Thursday, July 03, 2014
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!