Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

ACD’s RNAscope® In Situ Hybridization Technology Gains Significant Traction

Published: Wednesday, July 16, 2014
Last Updated: Tuesday, July 15, 2014
Bookmark and Share
Highly sensitive and easy-to-use technology validated in over 100 papers in three years.

Advanced Cell Diagnostics Inc. (ACD) has announced that its RNAscope® RNA in situ hybridization technology has reached two major milestones.

In just three years, over 100 peer-reviewed papers featuring the technology have been published, and with the significant increase in use of RNAscope, ACD has now built a library of over 4000 target probes for numerous species.

Probes are designed to order in under two weeks, and in just six months the library has grown by over 1500, reflecting the wide interest in ACD’s breakthrough technology.

RNAscope uniquely has the sensitivity to enable researchers to detect in situ single RNA molecules and provide quantitative analysis of gene expression at a single cell level. In addition, the technology provides morphological context by showing spatial and cell-specific expression while preserving tissue architecture.

RNAscope’s ability to unlock the full potential of RNA biomarkers, together with its highly reproducible and easy-to-use technology, has resulted in an average of over 6 papers a month published so far in 2014 - a rate that is doubling every year.

Now in wide use throughout academia and industry, the papers range from basic research in developmental biology, neuroscience and stem cells to clinical research such as cancer biomarkers, infectious diseases and ophthalmology, in respected journals such as Nature, Science, Cell, PLoS One, PNAS and Clinical Cancer Research.

Localizing and quantifying RNA sequences in the context of cells and tissues is a fundamental approach in molecular biology. RNAscope makes it accessible to researchers of any level of experience, as Alexey Pronin, PhD of the University of Miami School of Medicine, who recently published in PLoS One, explained. “Even though I had no previous experience of in situ hybridization, the RNAscope assay was easy to perform and worked first time, allowing us to confirm the expression of three different genes in the mouse eye that we had previously identified via transcriptomics. Importantly, the multiplex assay showed that two of the genes are expressed in two separate cell layers of the eye blood vessels – information that would be hard to get using other technologies.”

“Publications from our customers are particularly exciting, as it shows the growing validation and adoption of our technologies at the forefront of scientific research”, said Xiao-Jun Ma, ACD’s CSO. “And with our probe catalog growing by 240% in the last year, targeting more than 4,000 genes in many species, it’s a real testament to the demand for our technology, our fast probe development times and the scalability of our platform. Together, these two milestones are a comprehensive validation of the effectiveness of RNAscope technology. In this age of single-cell transcriptomics, RNA in situ hybridization will prove to be indispensable in the effort to characterize the many newly discovered genes, especially the vast repertoire of noncoding RNA genes. We believe that the specific benefits of RNAscope technology will undoubtedly accelerate the translation of genomic discoveries to clinical medicine including new therapeutics and diagnostics.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

ACD Completes $22 Million Series C Equity Financing
Proceeds will accelerate commercialization and launch of new technology platforms.
Friday, June 19, 2015
Advanced Cell Diagnostics Appoints Tom Olenic as Chief Commercial Officer
Advanced Cell Diagnostics, Inc. (ACD) has announced the appointment of Tom Olenic to its executive leadership team as Chief Commercial Officer.
Tuesday, December 02, 2014
MicroMatrices, Advanced Cell Diagnostics Partnership
MicroMatrices becomes preferred partner for preclinical use of ACD’s RNA ISH.
Monday, November 10, 2014
ACD Awarded $1.4 Million NCI Grant
Two-year grant to develop ultrasensitive diagnostic test for B-Cell lymphoma.
Wednesday, October 08, 2014
ACD Establishes Subsidiary to Serve the European Market
Subsidiary will enable easy ordering, fast delivery and enhanced support for EU customers
Monday, September 15, 2014
ACD Receives ISO Certification
ACD’s ISO 13485:2003 certification covers the design, development, production, and commercialization of ACD’s proprietary RNAscope® product lines.
Tuesday, August 12, 2014
Scientific News
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Horse Illness Shares Signs of Human Disease
Horses with a rare nerve condition have similar signs of disease as people with conditions such as Alzheimer’s, a study has found.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos