Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Scientists Identify Gene Linked to Fatal Inflammatory Disease in Children

Published: Friday, July 18, 2014
Last Updated: Friday, July 18, 2014
Bookmark and Share
Repurposed drugs may offer first potential therapy.

Investigators have identified a gene that underlies a very rare but devastating autoinflammatory condition in children. Several existing drugs have shown therapeutic potential in laboratory studies, and one is currently being studied in children with the disease, which the researchers named STING-associated vasculopathy with onset in infancy (SAVI).

The findings appeared online in the New England Journal of Medicine. The research was done at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health.

“Not only do these discoveries have profound implications for children with SAVI, but they could have a broader impact by helping us to understand other, more common inflammatory conditions,” said NIAMS Director Stephen I. Katz, M.D., Ph.D. “Diseases such as lupus share some characteristics with SAVI, so this work may lead to novel insights and possibly new treatments for these debilitating conditions, as well.”

The senior author of the study, Raphaela Goldbach-Mansky, M.D., and the co-lead authors, Yin Liu, M.D., Ph.D., Adriana A. Jesus, M.D., Ph.D., and Bernadette Marrero, Ph.D., are in the NIAMS Translational Autoinflammatory Disease Section.

Autoinflammatory diseases are a class of conditions in which the immune system, seemingly unprovoked, becomes activated and triggers inflammation. Normally, the inflammatory response helps quell infections, but the prolonged inflammation that occurs in these diseases can damage the body.

In 2004, Dr. Goldbach-Mansky was called upon to advise on a patient with a baffling problem - a 10-year-old girl with signs of systemic inflammation, especially in the blood vessels, who had not responded to any of the medications her doctors had used to treat her.

She had blistering rashes on her fingers, toes, ears, nose and cheeks, and had lost parts of her fingers to the disease. The child also had severe scarring in her lungs and was having trouble breathing. She had shown signs of the disease as an infant and had progressively worsened. She died a few years later.

By 2010, Dr. Goldbach-Mansky had seen two other patients with the same symptoms. She suspected that all three had the same disease, and that it was caused by a genetic defect that arose in the children themselves, rather than having been inherited from their parents, who were not affected. Her hunch suggested a strategy for identifying the genetic defect. By comparing the DNA of an affected child with the DNA of the child’s parents, scientists would be able to spot the differences and possibly identify the disease-causing mutation.

The DNA comparison revealed a novel mutation in a gene that encodes a protein called STING, a known signaling molecule whose activation leads to production of interferon, a key immune regulator. When overproduced, however, interferon can trigger inflammation.

“Blood tests on the affected children had shown high levels of interferon-induced proteins, so we were not surprised when the mutated gene turned out to be related to interferon signaling,” said Dr. Goldbach-Mansky.

When the researchers tested the DNA of five other patients with similar symptoms, they found mutations in the same gene, confirming STING’s role in the disease.

The excessive inflammation observed in patients, along with other evidence of interferon pathway activation, indicated that the mutations in STING boosted the protein’s activity.

Interferon normally works to restrict an invading pathogen’s ability to replicate by triggering a function that stimulates immune cells. But prolonged activation of the pathway leads to chronic inflammation and damage to tissues and organs.

The researchers found that STING was present in high levels in the cells lining the blood vessels and the lungs, which would likely explain why these tissues are predominantly affected by the disease.

Dr. Goldbach-Mansky’s team next looked for ways to dampen the inflammatory response in people with SAVI.

“When mutations that cause autoinflammatory conditions hit an important pathway, the outcome for patients can be dismal,” said Dr. Goldbach-Mansky. “But because SAVI is caused by a single gene defect and interferon has such a strong role, I’m optimistic that we’ll be able to target the pathway and potentially make a huge difference in the lives of these children.”

Several drugs - tofacitinib, ruxolitinib and baricitinib - are known to work by blocking the interferon pathway, so the researchers reasoned that these medicines might be effective in people with SAVI, as well. When they tested the effect of the drugs on SAVI patients’ blood cells in the lab, they saw a marked reduction in interferon-pathway activation.

The researchers are now enrolling SAVI patients in an expanded access program, also known as a compassionate use protocol. Compassionate use protocols allow doctors to give investigational medicines to patients with serious diseases or conditions for which there is no comparable or satisfactory alternative therapy to treat the patient’s disease or condition.

In future work, Dr. Goldbach-Mansky’s team will further delve into STING’s exact role in the interferon pathway and examine how the mutations that cause SAVI lead to interferon overproduction.

“These mutations help us to understand the disease, but they also give us the rare opportunity to study the biology of the STING-mediated immune response,” said Dr. Liu. “We don’t really understand how STING is activated or how the signal gets passed on to downstream molecules, but this work will help advance our understanding of this critically important pathway and its impact on other diseases.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Wednesday, December 07, 2016
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Wednesday, December 07, 2016
Uncovering Cerebral Malaria’s Deadly Agents
NIH scientists film inside mouse brains to uncover biology behind the disease.
Wednesday, December 07, 2016
Study to Assess Shorter-Duration Antibiotics in Children
Physicians plan a clinical trial to evaluate whether short course anti-biotics are effective at treating CAP in children.
Wednesday, November 30, 2016
First New HIV Vaccine Study for Seven Years Begins
South Africa hosts historic clinical trial of experimental HIV vaccine aiming to safely prevent HIV infection.
Wednesday, November 30, 2016
Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Wednesday, November 23, 2016
Food Additives Promote Inflammation, Colon Cancer
Dietary emulsifiers promoted colon cancer in a mouse model by altering gut microbes and increasing gut inflammation.
Wednesday, November 23, 2016
Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Wednesday, November 23, 2016
More Immunotherapy Options Approved for Lung Cancer
The FDA has approved a new immunotherapy drug for certain patients with non-small cell lung cancer.
Monday, November 21, 2016
Big Data for Infectious Disease Surveillance
NIH-led effort examines use of big data from health records and other digital sources for uses in infectious disease surveillance.
Tuesday, November 15, 2016
Potential Therapies Against Drug-Resistant Bacteria Identified
Researchers create new identification method for drug and drug combinations that may combat resistant infections.
Thursday, November 10, 2016
Testing Zika Vaccine in Humans Begins
The first of five planned clinical trials to test ZPIV vaccine in humans has begun.
Tuesday, November 08, 2016
Genetic Markers Predict Malaria Treatment Failure
By comparing 297 parasite genomes to a reference malaria parasite genome, researchers have identified two genetic markers that are strongly associated with the parasites’ ability to resist piperaquine.
Monday, November 07, 2016
Cannabinoid Receptor Structure Revealed
Scientists provided a detailed view of the primary molecule through which cannabinoids exert their effects on the brain. The findings might help guide the design of more targeted medicines with fewer side effects.
Wednesday, November 02, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Forensic 3D Documentation of Skin Injuries
In this study, the validity of using photogrammetry for documenting injuries in a pathological context was demonstrated.
3-D Printed Dog’s Nose Improves Vapor Detection
By mimicking how dogs get their whiffs, a team of government and university researchers have demonstrated that “active sniffing” can improve by more than 10 times the performance of current technologies that rely on continuous suction to detect trace amounts of explosives and other contraband.
New Markers for Forensic Body-fluid Identification
University of Bonn researchers have successfully identified specific Micro-RNA signatures to help forensically identify body fluids.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!