We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Bruker Introduces Inspire Nanoscale Chemical Mapping System

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Bruker has announced the release of Inspire™, the first integrated scanning probe microscopy (SPM) infrared system for 10-nanometer spatial resolution in chemical and materials property mapping.

The new and unique Inspire system incorporates Bruker’s proprietary PeakForce IR™ mode to enable nanoscale infrared reflection and absorption mapping for a wide range of applications, including the characterization of microphases and their interfaces in polymer blends, plasmons in the two-dimensional electron gas of graphene, and chemical heterogeneity in complex materials and thin films.

The Inspire system features sensitivity down to molecular monolayers, even on samples not amenable to standard atomic force microscopy techniques. Inspire utilizes fully integrated infrared scattering, scanning near-field optical microscope (SNOM) optics, point-and-click alignment, and the full suite of exclusive PeakForce Tapping® technologies found on Bruker’s performance-leading AFMs, from ScanAsyst® self-optimization to quantitative PeakForce QNM® nanomechanics and PeakForce KPFM™ work function measurements.

The resulting Inspire solution now provides instant access to the highest resolution chemical, plasmonics, nanomechanical, and electrical characterization for new scientific research and nano-analytical frontiers.

“The infrared scattering SNOM technique has great potential for new scientific discoveries through highest resolution spatio-spectral imaging,” explained Professor Markus B. Raschke, Departments of Physics and Chemistry, and JILA, at the University of Colorado, Boulder. “Its wide, productive application has been held back by the lack of an integrated solution.”

“With Inspire, we now have provided this integrated solution, which is a major milestone on our path to enable even more widespread AFM adoption by providing new, nanoscale chemical information to researchers,” added David V. Rossi, Executive Vice President and General Manager of Bruker's AFM Business. “Inspire builds upon our exclusive PeakForce Tapping technology to provide a complete set of the highest resolution nanochemical and nanomechanical property maps together with topography in a single SPM measurement.”