" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Schizophrenia’s Genetic Skyline Rising

Published: Thursday, July 24, 2014
Last Updated: Thursday, July 24, 2014
Bookmark and Share
Suspect common variants soar from 30 to 108 - NIH-funded study.

The largest genomic dragnet of any psychiatric disorder to date has unmasked 108 chromosomal sites harboring inherited variations in the genetic code linked to schizophrenia, 83 of which had not been previously reported.

By contrast, the “skyline” of such suspect variants associated with the disorder contained only 5 significant peaks in 2011. By combining data from all available schizophrenia genetic samples, researchers supported by the National Institutes of Health powered the search for clues to the molecular basis of the disorder to a new level.

“While the suspect variation identified so far only explains only about 3.5 percent of the risk for schizophrenia, these results warrant exploring whether using such data to calculate an individual’s risk for developing the disorder might someday be useful in screening for preventive interventions,” explained Thomas R. Insel, M.D., director of the NIH’s National Institute of Mental Health, one funder of the study. “Even based on these early predictors, people who score in the top 10 percent of risk may be up to 20-fold more prone to developing schizophrenia.”

The newfound genomic signals are not simply random sites of variation, say the researchers. They converge around pathways underlying the workings of processes involved in the disorder, such as communication between brain cells, learning and memory, cellular ion channels, immune function and a key medication target.

The Schizophrenia Working Group of the Psychiatric Genomic Consortium (PGC) External Web Site Policy reports on its genome-wide analysis of nearly 37,000 cases and more than 113,000 controls in the journal Nature, July 21, 2014. The NIMH-supported PGC represents more than 500 investigators at more than 80 research institutions in 25 countries.

Prior to the new study, schizophrenia genome-wide studies had identified only about 30 common gene variants associated with the disorder. Sample sizes in these studies were individually too small to detect many of the subtle effects on risk exerted by such widely shared versions of genes. The PGC investigators sought to maximize statistical power by re-analyzing not just published results, but all available raw data, published and unpublished. Their findings of 108 illness-associated genomic locations were winnowed from an initial pool of about 9.5 million variants.

A comparison of the combined study data with findings in an independent sample of cases and controls suggest that considerably more such associations of this type are likely to be uncovered with larger sample sizes, say the researchers.

There was an association confirmed with variation in the gene that codes for a receptor for the brain chemical messenger dopamine, which is known to be the target for antipsychotic medications used to treat schizophrenia. Yet evidence from the study supports the view that most variants associated with schizophrenia appear to exert their effects via the turning on and off of genes rather than through coding for proteins.

The study found a notable overlap between protein-related functions of some linked common variants and rare variants associated with schizophrenia in other studies. These included genes involved in communication between neurons via the chemical messenger glutamate, learning and memory, and the machinery controlling the influx of calcium into cells.

“The overlap strongly suggests that common and rare variant studies are complementary rather than antagonistic, and that mechanistic studies driven by rare genetic variation will be informative for schizophrenia,” say the researchers.

Among the strongest associations detected, as in previous genome-wide genetic studies, was for variation in tissues involved in immune system function. Although the significance of this connection for the illness process remains a mystery, epidemiologic evidence has long hinted at possible immune system involvement in schizophrenia.

Findings confirm that it’s possible to develop risk profile scores based on schizophrenia-associated variants that may be useful in research - but for now aren’t ready to be used clinically as a predictive test, say the researchers.

They also note that the associated variations detected in the study may not themselves be the source of risk for schizophrenia. Rather, they may be signals indicating the presence of disease-causing variation nearby in a chromosomal region.

Researchers are following up with studies designed to pinpoint the specific sequences and genes that confer risk. The PGC is also typing genes in hundreds of thousands of people worldwide to enlarge the sample size, in hopes of detecting more genetic variation associated with mental disorders. Successful integration of data from several GWAS studies suggests that this approach would likely be transferrable to similar studies of other disorders, say the researchers.

“These results underscore that genetic programming affects the brain in tiny, incremental ways that can increase the risk for developing schizophrenia,” said Thomas Lehner, Ph.D., chief of NIMH’s Genomics Research Branch. “They also validate the strategy of examining both common and rare variation to understand this complex disorder.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
Wednesday, January 13, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Scientific News
Breaking Cell Barriers with Retractable Protein Nanoneedles
Adapting a bacterial structure, institute researchers have developed protein actuators that can mechanically puncture cells.
Gene Signature could Lead to a New Way of Diagnosing Lyme Disease
Lyme disease patients had distinctive gene signatures that persisted for at least three weeks, even after they had taken the antibiotics.
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!