Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Schizophrenia’s Genetic Skyline Rising

Published: Thursday, July 24, 2014
Last Updated: Thursday, July 24, 2014
Bookmark and Share
Suspect common variants soar from 30 to 108 - NIH-funded study.

The largest genomic dragnet of any psychiatric disorder to date has unmasked 108 chromosomal sites harboring inherited variations in the genetic code linked to schizophrenia, 83 of which had not been previously reported.

By contrast, the “skyline” of such suspect variants associated with the disorder contained only 5 significant peaks in 2011. By combining data from all available schizophrenia genetic samples, researchers supported by the National Institutes of Health powered the search for clues to the molecular basis of the disorder to a new level.

“While the suspect variation identified so far only explains only about 3.5 percent of the risk for schizophrenia, these results warrant exploring whether using such data to calculate an individual’s risk for developing the disorder might someday be useful in screening for preventive interventions,” explained Thomas R. Insel, M.D., director of the NIH’s National Institute of Mental Health, one funder of the study. “Even based on these early predictors, people who score in the top 10 percent of risk may be up to 20-fold more prone to developing schizophrenia.”

The newfound genomic signals are not simply random sites of variation, say the researchers. They converge around pathways underlying the workings of processes involved in the disorder, such as communication between brain cells, learning and memory, cellular ion channels, immune function and a key medication target.

The Schizophrenia Working Group of the Psychiatric Genomic Consortium (PGC) External Web Site Policy reports on its genome-wide analysis of nearly 37,000 cases and more than 113,000 controls in the journal Nature, July 21, 2014. The NIMH-supported PGC represents more than 500 investigators at more than 80 research institutions in 25 countries.

Prior to the new study, schizophrenia genome-wide studies had identified only about 30 common gene variants associated with the disorder. Sample sizes in these studies were individually too small to detect many of the subtle effects on risk exerted by such widely shared versions of genes. The PGC investigators sought to maximize statistical power by re-analyzing not just published results, but all available raw data, published and unpublished. Their findings of 108 illness-associated genomic locations were winnowed from an initial pool of about 9.5 million variants.

A comparison of the combined study data with findings in an independent sample of cases and controls suggest that considerably more such associations of this type are likely to be uncovered with larger sample sizes, say the researchers.

There was an association confirmed with variation in the gene that codes for a receptor for the brain chemical messenger dopamine, which is known to be the target for antipsychotic medications used to treat schizophrenia. Yet evidence from the study supports the view that most variants associated with schizophrenia appear to exert their effects via the turning on and off of genes rather than through coding for proteins.

The study found a notable overlap between protein-related functions of some linked common variants and rare variants associated with schizophrenia in other studies. These included genes involved in communication between neurons via the chemical messenger glutamate, learning and memory, and the machinery controlling the influx of calcium into cells.

“The overlap strongly suggests that common and rare variant studies are complementary rather than antagonistic, and that mechanistic studies driven by rare genetic variation will be informative for schizophrenia,” say the researchers.

Among the strongest associations detected, as in previous genome-wide genetic studies, was for variation in tissues involved in immune system function. Although the significance of this connection for the illness process remains a mystery, epidemiologic evidence has long hinted at possible immune system involvement in schizophrenia.

Findings confirm that it’s possible to develop risk profile scores based on schizophrenia-associated variants that may be useful in research - but for now aren’t ready to be used clinically as a predictive test, say the researchers.

They also note that the associated variations detected in the study may not themselves be the source of risk for schizophrenia. Rather, they may be signals indicating the presence of disease-causing variation nearby in a chromosomal region.

Researchers are following up with studies designed to pinpoint the specific sequences and genes that confer risk. The PGC is also typing genes in hundreds of thousands of people worldwide to enlarge the sample size, in hopes of detecting more genetic variation associated with mental disorders. Successful integration of data from several GWAS studies suggests that this approach would likely be transferrable to similar studies of other disorders, say the researchers.

“These results underscore that genetic programming affects the brain in tiny, incremental ways that can increase the risk for developing schizophrenia,” said Thomas Lehner, Ph.D., chief of NIMH’s Genomics Research Branch. “They also validate the strategy of examining both common and rare variation to understand this complex disorder.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Drug Used To Treat HIV Linked to Lower Bone Mass in Newborns
NIH study finds mothers’ use of tenofovir tied to lower bone mineral content in babies.
Wednesday, September 30, 2015
Repairing Nerve Pathways With 3-D Printing
A novel 3-D printing approach was used to create custom scaffolds that helped damaged rat nerves regenerate and improved the animals’ ability to walk.
Tuesday, September 29, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Launches Landmark Study On Substance Use And Adolescent Brain Development
Thirteen grants awarded to look at cognitive and social development in approximately 10,000 children.
Monday, September 28, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Scientific News
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos