Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Awards $14.5M for DNA Sequencing Techniques

Published: Tuesday, August 05, 2014
Last Updated: Tuesday, August 05, 2014
Bookmark and Share
For the past several years, nanopore research has been an important focus of the program’s grants.

A number of micro-sized technologies - such as nanopores and microfluidics - are among the approaches researchers will use to develop high quality, low cost DNA sequencing technology through new grants from the National Institutes of Health.

The grants, which total approximately $14.5 million to eight research teams over two to four years as funds become available, are the last to be awarded by the Advanced DNA Sequencing Technology program of the National Human Genome Research Institute (NHGRI), a part of NIH.

The new group of awards - which total more than $4.5 million in the first year - is wide-ranging, and includes several research projects directed at improving the use of nanopores in DNA sequencing or creating nanopore arrays to enable large-scale DNA sequencing efforts.

Nanopore-based DNA sequencing entails threading single DNA strands through tiny pores in a membrane. Bases - the chemical letters of DNA - are read one at a time as they squeeze through the nanopore.

The different bases are identified by measuring differences in their effect on electrical current flowing through the pore. Nanopores used in DNA sequencing are extremely small, perhaps only about 2 nanometers wide, and come in several types: protein; solid state (also called synthetic); and even nanopores made of DNA. A nanometer is 1 billionth of a meter; a human hair is 100,000 nanometers wide.

One of the projects will explore the use of microfluidics in DNA library preparation. A library is a collection of stretches of physical DNA. Microfluidics can be used to capture small amounts of liquid in hair-thin channels and wells. Another team plans to test a method using an enzyme to amplify a signal that will help identify DNA bases.

“While we continue to support many research projects centered on the development of nanopore technology, some of the new grants focus on additional unique approaches to sequencing DNA,” said NHGRI Genome Technology Program Director Jeffery Schloss, Ph.D. Dr. Schloss is also director of the Division of Genome Sciences. “Despite discussion about approaching the goal of sequencing a genome for only $1,000, many challenges remain in terms of containing costs and achieving a high quality of DNA sequencing data.”

This group of awards is the last for the Advanced DNA Sequencing Technology program, which began in 2004.

“There haven’t been many programs like this anywhere else over the years,” Dr. Schloss said. “NHGRI has had a hand in supporting some very novel research, and has helped chart exciting new directions for DNA sequencing technology.”

The new grants are awarded (pending available funds) to:

• University of California Santa Cruz, $2.29 million over three years
Principal Investigator: Mark Akeson, Ph.D.

Investigators plan to sequence single DNA molecules by using a nanopore device comprised of a sensor that touches, examines and identifies each nucleotide, or DNA building block, in a DNA strand as an enzyme motor moves it through the pore. The scientists will focus on DNA “resequencing” - examining the DNA nucleotides over and over - because of the difficulty in accurately reading each strand initially.

• Illumina, Inc., San Diego, $592,000 over two years
Principal Investigator: Boyan Boyanov, Ph.D.

Dr. Boyanov and his team aim to create a hybrid protein solid-state nanopore array system that can enable scientists to sequence DNA on a large scale. Their goal is to improve the robustness of nanopore platforms by combining computer chip fabrication methods with biological nanopores to enable high-throughput sequencing. The latter refers to a very high rate of sequencing DNA by sequencing large numbers of DNA samples in parallel.

• University of Pennsylvania, Philadelphia, $880,000 over two years
Principal Investigator: Marija Drndic, Ph.D.

Investigators plan to develop a synthetic nanopore from graphene - an extremely conductive material consisting of a lattice of atoms, one atom thick - that will enable the detection of individual DNA bases without the need to slow down the DNA molecule as it passes through a pore. Researchers hope to directly identify DNA bases by measuring unique differences in current flowing through the graphene.

• Caerus Molecular Diagnostics, Inc., Mountain View, California, $701,000 over three years
Principal Investigator: Javier Farinas, Ph.D.

Researchers commonly use a system to identify DNA bases that entails making many copies of DNA and detecting a light signal from the DNA. Dr. Farinas and his co-workers plan to test a technology that uses an engineered enzyme switch to convert the product of a single molecule DNA sequencing reaction into many copies of a reporter molecule that are easily detected. The method promises to more accurately identify DNA bases.

• The Scripps Research Institute, La Jolla, California, $4.4 million over four years
Principal Investigator: M. Reza Ghadiri, Ph.D.

Investigators plan to produce protein nanopore arrays in order to sequence tens of thousands of DNA molecules in parallel, with the eventual goal of sequencing a human genome in as little as 10 minutes. They will explore three separate approaches, including arrays of lipid bilayers containing nanopores, protein pores individually embedded in synthetic films, and nanopores made of DNA that are distributed on DNA scaffolds.

• Eve Biomedical, Inc., Mountain View, California, $500,000 over two years
Principal Investigator: Theofilos Kotseroglou, Ph.D.

Researchers will study a system to sequence DNA using an enzyme (polymerase) on a carbon nanotube, in an array format. Carbon nanotubes are long, thin cylindrical tubes that are highly conductive. When an enzyme is anchored on a tube, the enzyme’s motion - while interacting with a DNA sample - changes the conductivity on the nanotube, and enables bases of the sample DNA to be identified.

• University of Washington, Seattle, $1.7 million over three years
Principal Investigator: Jay Shendure, M.D., Ph.D.

Dr. Shendure and his colleagues plan to develop new molecular biology techniques to efficiently and cost-effectively stitch together genomes across long distances. They hope this will help improve the quality of genomes that are generated by new DNA sequencing technologies.

• University of California, San Diego, $3.7 million over four years
Principal Investigators: Kun Zhang, Ph.D. and Xiaohua Huang, Ph.D.

This team plans to develop a system using microfluidics that will enable accurate genome sequencing of a single mammalian cell. Investigators will separate and sequence single chromosomal DNA strands, and then with the help of novel technology to make many copies of genomes, they will create DNA sequence libraries for DNA sequencing of single cells.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
Wednesday, January 13, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Scientific News
Head Injury Patients have Protein Clumps Associated with Alzheimer’s Disease
Scientists have revealed that protein clumps associated with Alzheimer's disease are also found in the brains of people who have had a head injury.
Exposure to Air Pollution 30 Years Ago Associated with Increased Risk of Death
Exposure to air pollution more than 30 years ago may still affect an individual's mortality risk today, according to new research from Imperial College London.
More Then 1 in 20 U.S. Children have Dizziness and Balance Problems
Researchers at NIH have found that girls have a higher prevalence of dizziness and balance problems compared to boys, 5.7 percent and 5.0 percent.
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Low-Cost, Portable NQR Spectroscopy
A researcher at Case Western Reserve University is developing a low-cost, portable prototype designed to detect tainted medicines and food supplements that otherwise can make their way to consumers. The technology can authenticate good medicines and supplements.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Spero Therapeutics Announces $30 Million Series B Preferred Financing
Company has announced financing of $30 million to support development of novel therapies to treat gram-negative bacterial infections.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!