Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Awards $14.5M for DNA Sequencing Techniques

Published: Tuesday, August 05, 2014
Last Updated: Tuesday, August 05, 2014
Bookmark and Share
For the past several years, nanopore research has been an important focus of the program’s grants.

A number of micro-sized technologies - such as nanopores and microfluidics - are among the approaches researchers will use to develop high quality, low cost DNA sequencing technology through new grants from the National Institutes of Health.

The grants, which total approximately $14.5 million to eight research teams over two to four years as funds become available, are the last to be awarded by the Advanced DNA Sequencing Technology program of the National Human Genome Research Institute (NHGRI), a part of NIH.

The new group of awards - which total more than $4.5 million in the first year - is wide-ranging, and includes several research projects directed at improving the use of nanopores in DNA sequencing or creating nanopore arrays to enable large-scale DNA sequencing efforts.

Nanopore-based DNA sequencing entails threading single DNA strands through tiny pores in a membrane. Bases - the chemical letters of DNA - are read one at a time as they squeeze through the nanopore.

The different bases are identified by measuring differences in their effect on electrical current flowing through the pore. Nanopores used in DNA sequencing are extremely small, perhaps only about 2 nanometers wide, and come in several types: protein; solid state (also called synthetic); and even nanopores made of DNA. A nanometer is 1 billionth of a meter; a human hair is 100,000 nanometers wide.

One of the projects will explore the use of microfluidics in DNA library preparation. A library is a collection of stretches of physical DNA. Microfluidics can be used to capture small amounts of liquid in hair-thin channels and wells. Another team plans to test a method using an enzyme to amplify a signal that will help identify DNA bases.

“While we continue to support many research projects centered on the development of nanopore technology, some of the new grants focus on additional unique approaches to sequencing DNA,” said NHGRI Genome Technology Program Director Jeffery Schloss, Ph.D. Dr. Schloss is also director of the Division of Genome Sciences. “Despite discussion about approaching the goal of sequencing a genome for only $1,000, many challenges remain in terms of containing costs and achieving a high quality of DNA sequencing data.”

This group of awards is the last for the Advanced DNA Sequencing Technology program, which began in 2004.

“There haven’t been many programs like this anywhere else over the years,” Dr. Schloss said. “NHGRI has had a hand in supporting some very novel research, and has helped chart exciting new directions for DNA sequencing technology.”

The new grants are awarded (pending available funds) to:

• University of California Santa Cruz, $2.29 million over three years
Principal Investigator: Mark Akeson, Ph.D.

Investigators plan to sequence single DNA molecules by using a nanopore device comprised of a sensor that touches, examines and identifies each nucleotide, or DNA building block, in a DNA strand as an enzyme motor moves it through the pore. The scientists will focus on DNA “resequencing” - examining the DNA nucleotides over and over - because of the difficulty in accurately reading each strand initially.

• Illumina, Inc., San Diego, $592,000 over two years
Principal Investigator: Boyan Boyanov, Ph.D.

Dr. Boyanov and his team aim to create a hybrid protein solid-state nanopore array system that can enable scientists to sequence DNA on a large scale. Their goal is to improve the robustness of nanopore platforms by combining computer chip fabrication methods with biological nanopores to enable high-throughput sequencing. The latter refers to a very high rate of sequencing DNA by sequencing large numbers of DNA samples in parallel.

• University of Pennsylvania, Philadelphia, $880,000 over two years
Principal Investigator: Marija Drndic, Ph.D.

Investigators plan to develop a synthetic nanopore from graphene - an extremely conductive material consisting of a lattice of atoms, one atom thick - that will enable the detection of individual DNA bases without the need to slow down the DNA molecule as it passes through a pore. Researchers hope to directly identify DNA bases by measuring unique differences in current flowing through the graphene.

• Caerus Molecular Diagnostics, Inc., Mountain View, California, $701,000 over three years
Principal Investigator: Javier Farinas, Ph.D.

Researchers commonly use a system to identify DNA bases that entails making many copies of DNA and detecting a light signal from the DNA. Dr. Farinas and his co-workers plan to test a technology that uses an engineered enzyme switch to convert the product of a single molecule DNA sequencing reaction into many copies of a reporter molecule that are easily detected. The method promises to more accurately identify DNA bases.

• The Scripps Research Institute, La Jolla, California, $4.4 million over four years
Principal Investigator: M. Reza Ghadiri, Ph.D.

Investigators plan to produce protein nanopore arrays in order to sequence tens of thousands of DNA molecules in parallel, with the eventual goal of sequencing a human genome in as little as 10 minutes. They will explore three separate approaches, including arrays of lipid bilayers containing nanopores, protein pores individually embedded in synthetic films, and nanopores made of DNA that are distributed on DNA scaffolds.

• Eve Biomedical, Inc., Mountain View, California, $500,000 over two years
Principal Investigator: Theofilos Kotseroglou, Ph.D.

Researchers will study a system to sequence DNA using an enzyme (polymerase) on a carbon nanotube, in an array format. Carbon nanotubes are long, thin cylindrical tubes that are highly conductive. When an enzyme is anchored on a tube, the enzyme’s motion - while interacting with a DNA sample - changes the conductivity on the nanotube, and enables bases of the sample DNA to be identified.

• University of Washington, Seattle, $1.7 million over three years
Principal Investigator: Jay Shendure, M.D., Ph.D.

Dr. Shendure and his colleagues plan to develop new molecular biology techniques to efficiently and cost-effectively stitch together genomes across long distances. They hope this will help improve the quality of genomes that are generated by new DNA sequencing technologies.

• University of California, San Diego, $3.7 million over four years
Principal Investigators: Kun Zhang, Ph.D. and Xiaohua Huang, Ph.D.

This team plans to develop a system using microfluidics that will enable accurate genome sequencing of a single mammalian cell. Investigators will separate and sequence single chromosomal DNA strands, and then with the help of novel technology to make many copies of genomes, they will create DNA sequence libraries for DNA sequencing of single cells.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study to Assess Shorter-Duration Antibiotics in Children
Physicians plan a clinical trial to evaluate whether short course anti-biotics are effective at treating CAP in children.
Wednesday, November 30, 2016
First New HIV Vaccine Study for Seven Years Begins
South Africa hosts historic clinical trial of experimental HIV vaccine aiming to safely prevent HIV infection.
Wednesday, November 30, 2016
Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Wednesday, November 23, 2016
Food Additives Promote Inflammation, Colon Cancer
Dietary emulsifiers promoted colon cancer in a mouse model by altering gut microbes and increasing gut inflammation.
Wednesday, November 23, 2016
Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Wednesday, November 23, 2016
More Immunotherapy Options Approved for Lung Cancer
The FDA has approved a new immunotherapy drug for certain patients with non-small cell lung cancer.
Monday, November 21, 2016
Big Data for Infectious Disease Surveillance
NIH-led effort examines use of big data from health records and other digital sources for uses in infectious disease surveillance.
Tuesday, November 15, 2016
Potential Therapies Against Drug-Resistant Bacteria Identified
Researchers create new identification method for drug and drug combinations that may combat resistant infections.
Thursday, November 10, 2016
Testing Zika Vaccine in Humans Begins
The first of five planned clinical trials to test ZPIV vaccine in humans has begun.
Tuesday, November 08, 2016
Genetic Markers Predict Malaria Treatment Failure
By comparing 297 parasite genomes to a reference malaria parasite genome, researchers have identified two genetic markers that are strongly associated with the parasites’ ability to resist piperaquine.
Monday, November 07, 2016
Cannabinoid Receptor Structure Revealed
Scientists provided a detailed view of the primary molecule through which cannabinoids exert their effects on the brain. The findings might help guide the design of more targeted medicines with fewer side effects.
Wednesday, November 02, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Ebola-Affected Countries Receive NIH Support
The National Institutes of Health has established a new program to further research capacity to study Ebola and other epidemics.
Thursday, October 27, 2016
Skin Patch to Treat Peanut Allergy
NIH-funded study suggests peanut protein patch is a safe and convenient method of treatment.
Thursday, October 27, 2016
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
Wednesday, October 26, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Possible Treatment for Rare Vascular Disease
Researchers manage to reverse hereditary haemorrhagic telangiectasia in mice, if successful in humans it could lead to improved treatment for the disease.
Sweet Tooth Science - Chocolate Antioxidants
Researchers develop a faster and cheaper method to test for antioxidants in chocolate.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!