Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

GTEx Project to Expand Functional Studies of Genomic Variation

Published: Wednesday, August 06, 2014
Last Updated: Wednesday, August 06, 2014
Bookmark and Share
Larger set of human tissues to be analyzed to contribute to a database and tissue bank that researchers can use to study how genomic variants influence gene activity.

The National Institutes of Health has awarded eight grants as part of the Genotype-Tissue Expression (GTEx) project to explore how human genes are expressed and regulated in different tissues, and the role that genomic variation plays in modulating that expression. The GTEx awards will contribute to a resource database and tissue bank that researchers can use to study how inherited genomic variants – inherited spelling changes in the DNA code – may influence gene activity and lead to disease. The grants will add data from analyses of tissue samples whose collection began in 2010, as well as expand the resource database and tissue bank.

The research groups will receive approximately $9 million in the first year, and nearly $15 million over three years pending the availability of funds. The project is funded by the NIH Common Fund, the National Institute of Mental Health (NIMH) and the National Heart, Lung, and Blood Institute (NHLBI).

“The new studies complement the current GTEx project in assessing genomic variation and gene expression,” explained Simona Volpi, Pharm.D., Ph.D., GTEx program director in the Division of Genomic Medicine at the National Human Genome Research Institute (NHGRI), which helps administer the program. “They delve deeper into what is happening in tissues on a molecular basis to explain how genomic variation affects how genes work. Ultimately, GTEx will provide an atlas of human gene expression.”

The groups plan to further characterize gene activity in tissues by analyzing several molecular phenotypes, or properties of cells – such as which genes are turned on and off, the various ways genes are regulated and the proteins that cells produce based on such regulation. To do this, scientists will examine part of the more than 30 tissue types available, which were collected through autopsies or organ and tissue transplant programs. The project will eventually include samples from about 900 deceased donors. Researchers will analyze DNA and RNA from the samples to identify and catalog genomic variants and gene expression.

For the last decade, scientists have used genome-wide association studies (GWAS) to study the role that genomic variation plays in complex diseases and traits. In GWAS, researchers compare thousands of genomic variants in individuals with a disease with those without the disease, establishing associations with particular variants and the disease being studied. But understanding what specific genomic variants do and how they influence the development of disease has been much more difficult to pinpoint.

By detailing certain features of cells and tissues, such as methylation patterns, protein levels and other characteristics, Dr. Volpi said that the new studies will “help paint a clearer picture of how genomic variation leads to particular diseases.” In methylation, one way that cells control gene expression is by adding chemicals, such as methyl groups.

“A scientist who is studying asthma or kidney cancer might be particularly interested in studying how genomic variants influence gene expression in the lungs or the kidneys, and the GTEx resource will provide this opportunity,” said Jeffery Struewing, M.D., GTEx program director in the NHGRI Division of Genomic Medicine.

The following research groups have been awarded grants (pending available funds)

University of Washington, Seattle, $1.85 million
Principal Investigator: Joshua Michael Akey, Ph.D.

Somatic mutations – genetic mutations that are not inherited, but instead occur randomly or are caused by environmental factors – can play important roles in many diseases and conditions, especially in cancer. But how these mutations contribute to genetic variability and disease susceptibility is not well understood. 

To find out, Dr. Akey and his coworkers plan to sequence the protein-coding genome regions of more than 15 tissue types and look for variations in DNA sequences and structures. Proteins are the working elements within a cell. They are vital for cellular growth, differentiation and repair. They catalyze chemical reactions and provide defense against disease, among myriad other housekeeping functions. The researchers will develop a comprehensive catalog of somatic mutations, which they hope will aid in identifying and interpreting mutations that cause human disease.

Johns Hopkins University, Baltimore, $3.24 million (including co-funding from NIMH)
Principal Investigator: Andrew Feinberg, M.D., M.P.H.

The investigators plan to analyze DNA methylation patterns across the entire genome, though their main focus is on brain regions that are important in schizophrenia, depression and addiction. Methylation is a process by which cells add chemicals – methyl groups – to genes to control their expression. The work will help researchers understand the relationship between DNA methylation, gene expression and gene sequences in human health and disease.

Massachusetts Institute of Technology, Cambridge, $1.25 million
Principal Investigator: Manolis Kellis, Ph.D. 

Most genetic variants linked to disease don’t code for proteins, but instead have subtle gene regulatory roles, such as altering gene activity levels, or affecting the chemical modifications — epigenomic marks — made to DNA that influence which genes are active in which cells. To better understand the effects of these regulatory variants, researchers plan to characterize the epigenomic effects of genetic variation in nine peripheral tissues with roles in diabetes, heart disease, and cancer. The research will help explain how genetic variation leads to changes in gene expression across tissues, and ultimately how these differences affect a person’s predisposition to disease.

Stanford University, Palo Alto, California, $1.22 million
Principal Investigator: Jin Billy Li, Ph.D.

To gauge the influence of genetic variation on gene regulation and expression in different cells and tissues, researchers can attempt to correlate gene expression with the degree to which a gene is turned on or off. One way to do this is to measure allele-specific expression (ASE). Genes come in pairs, or alleles, and sometimes one allele is expressed to a different degree than the other gene allele. 

Dr. Li, co-investigator Stephen Montgomery, Ph.D., and their colleagues plan to examine ASE in different tissue types to try to better understand the interaction between genetic variants that regulate gene expression and potential disease-causing variants.

University of Washington, Seattle, $2.24 million
Principal Investigator: John Stamatoyannopoulos, Ph.D.

Dr. Stamatoyannopoulos and his group plan to study genetic variants in non-protein coding regions of the genome, where most variants reside. They hope to explore how genetic variation in different types of tissues affects regulatory regions in the genome that control gene activity patterns. To do this, they will use a technique called DNase I-sequencing to examine certain areas in the genome and gauge gene regulation within tissue samples from various ethnic groups.

Stanford University, Palo Alto, California, $2.475 million (including co-funding from NHLBI)
Principal Investigators: Michael P. Snyder, Ph.D., and Hua Tang, Ph.D.

The large-scale project aims to characterize the many different ways in which proteins normally vary, across more than nine tissue types. Scientists will catalog protein variants by mass spectroscopy (a technique to identify chemicals by mass and charge), which will help them understand the genetic basis for protein variation. This will be a valuable resource for researchers to understand the genetic basis of complex traits, and ultimately, in predicting individual disease susceptibility. These research results may also help clinicians design individual prevention and treatment strategies.

University of Chicago, $1 million
Principal Investigator: Barbara Stranger, Ph.D.

Investigators plan to characterize the proteome — the entire set of proteins produced by a genome — in several tissue types to determine the genetic basis of variation in protein expression. They will measure the levels of certain types of proteins that are responsible for sending signals in cells, and another group of proteins that act as switches, affecting which genes are turned on. The researchers will then look for variation associated with differences in protein levels to see if variants associated with protein expression have been previously linked to complex diseases. This may enable them to pinpoint specific proteins or protein networks that may underlie such disease.

University of Chicago, $1.375 million
Principal Investigator: Brandon L. Pierce, Ph.D.

Telomeres are DNA caps at the end of chromosomes that are thought to protect cells from aging. The length of telomeres plays an important role in cell division, growth and genome stability, and evidence suggests that telomere shortening over a lifetime may be involved in disease, including heart disease, dementia and cancer. Interestingly, new research suggests that two common gene variants that lead to longer telomeres may actually increase the risk for deadly brain cancers called gliomas. To better determine the role of telomere length in disease development, Dr. Pierce and his colleagues will ask if telomere length in blood reflects its length in tissues usually associated with cancer, and whether telomere length in specific tissues indicates DNA damage and chromosomes that are unstable. They also will try to gauge the role of variants in genes known to affect telomere length and cancer risk in specific tissues.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,400+ scientific posters on ePosters
  • More Than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
Diagnosing Bacterial Infections in Blood Samples
Researchers have diagnosed a bacterial infection from a blood sample in infants.
Wednesday, August 24, 2016
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Tuesday, August 23, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Agent Blocks Pain Without Morphine's Side Effects
Scientists have synthesised a molecule with specific pain-relief properties and has shown its efficacy in mice.
Friday, August 19, 2016
Exploring Ebola-Malaria Link
Data shows people infected with Ebola were more likely to survive if co-infected with malarial parasite.
Thursday, August 18, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
Oral Immunotherapy Is Safe, Effective Treatment for Peanut-Allergic Preschoolers
Study demonstrates the potential of peanut OIT to suppress allergic immune responses to peanut.
Friday, August 12, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Stem Cells Grown On Scaffold Mimic Hip Joint Cartilage
Adult fat-derived stem cells grown on a 3-D scaffold that mimicked a hip joint surface formed cartilage and maintained the correct shape.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Using Animal Embryos Containing Human Cells
With recent advances in stem cell and gene editing technologies, an increasing number of researchers are interested in growing human tissues and organs in animals by introducing pluripotent human cells into early animal embryos.
Monday, August 08, 2016
Zika Vaccine Testing in Humans
The NAAID has initiated a clinical trail of a vaccine candidate for the prevention of the Zika virus infection.
Thursday, August 04, 2016
Scientific News
Adoption of Three Dimensional Culture Models May Save Lives
Physiologically relevant cell models can detect chronic hepatotoxicity early in the drug discovery process.
AACC 2016 Sees Clinical Chemistry Labs Drive Precision Medicine Offerings
Biomarker assays to enable precision medicine and risk assessment, mass spec-based tests designed for use in clinical labs large and small, and liquid biopsy technology captured the spotlight at the AACC annual meeting.
NASA's DNA Sequencing in Space is a Success
DNA has been sequenced in space for the first time ever for the Biomolecule Sequencer investigation, using the MinION sequencing device.
Major Pathogen of Barley Decoded
A team of scientists studying the fungus that causes Ramularia leaf spot have sequenced and explored its genome.
Inovio Launches Zika Vaccine Trial
Inovio launches Zika vaccine trial in midst of Puerto Rico epidemic to explore early signals of vaccine efficacy.
Shark Fins & Meat Contain High Levels of Neurotoxins Linked to Alzheimer’s Disease
UM research team says restricting shark consumption protects human health and shark populations.
Worms Point Way Toward Viral Strategies
Rice University wins NIH grant to study how nematodes handle gastrointestinal viruses.
Molecule Prevents Effect of Chemotherapy
Danish researchers from Aarhus University Hospital and Aarhus University have made a possible breakthrough in the treatment of colorectal cancer.
How The 'Police' Of The Cell World Deal With 'Intruders' And The 'Injured'
Findings may help discover new targets to manipulate inflammation.
Bringing Artificial Enzymes Closer to Nature
Scientists have developed an artificaiak metalloenzyme that catalyses a natural reaction within cells that has no natural equivalent.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!