Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Immune Cells get Cancer-Fighting Boost From Nanomaterials

Published: Monday, August 18, 2014
Last Updated: Monday, August 18, 2014
Bookmark and Share
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.

Scientists at Yale University have developed a novel cancer immunotherapy that rapidly grows and enhances a patient’s immune cells outside the body using carbon nanotube-polymer composites; the immune cells can then be injected back into a patient’s blood to boost the immune response or fight cancer.

According to the researchers, the topography of the carbon nanotubes (CNTs) enhances interactions between cells and long-term cultures, providing a fast and effective stimulation of the cytotoxic T cells that are important for eradicating cancer.

The researchers modified the CNTs by chemically binding them to polymer nanoparticles that held Interleukin-2, a cell signaling protein that encourages T cell growth and proliferation. Additionally, in order to mimic the body’s methods for stimulating cytotoxic T cell proliferation, the scientists seeded the surfaces of the CNTs with molecules that signaled which of the patient’s cells were foreign or toxic and should be attacked.

Over the span of 14 days, the number of T cells cultured on the composite nanosystem expanded by a factor of 200, according to the researchers. Also, the method required 1,000 times less Interleukin-2 than conventional culture conditions. A magnet was used to separate the CNT-polymer composites from the T cells prior to injection.

“In repressing the body’s immune response, tumors are like a castle with a moat around it,” says Tarek Fahmy, an associate professor of biomedical engineering and the study’s principal investigator. “Our method recruits significantly more cells to the battle and arms them to become superkillers.”

According to Fahmy, previous procedures for boosting antigen-specific T cells required exposing the patient’s harvested immune cells to other cells that stimulate activation and proliferation, a costly procedure that risks an adverse reaction to foreign cells. The Yale team’s use of magnetic CNT-polymer composites eliminates that risk by using simple, inexpensive magnets.

“Modulatory nanotechnologies can present unique opportunities for promising new therapies such as T cell immunotherapy,” says Tarek Fadel, lead author of the research and a Yale postdoc who is currently a staff scientist with the National Nanotechnology Coordination Office. “Engineers are progressing toward the design of the next generations of nanomaterials, allowing for further breakthrough in many fields, including cancer research.”

Two additional Yale engineering faculty contributed to this article: Gary Haller, the Henry Prentiss Becton Professor of Engineering and Applied Science and a professor of chemistry; and Lisa Pfefferle, the C. Baldwin Sawyer Professor of Chemical and Environmental Engineering. Other authors include Fiona Sharp, Nalini Vudattu, Ragy Ragheb, Justin Garyu, Dongin Kim, Enping Hong, Nan Li, Sune Justesen, and Kevan Herold.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Editing Gene Mutations in Anemia
Researchers successfully use a new gene editing strategy to correct mutations that cause a form of anemia.
Wednesday, October 26, 2016
Genes Help Track Odd Migrations of Zika Mosquitoes
Study shows that mosquitoes carrying Zika virus or Dengue fever a genetically distinct around the world.
Wednesday, October 26, 2016
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
Thursday, October 20, 2016
Alzheimer’s-Linked Protein May Play Role in Schizophrenia
Researchers suggests a protein linked to cognitive decline in Alzheimer's also plays a role in genetic predisposition to schizophrenia.
Wednesday, October 19, 2016
Ovarian Cancer Insight
Study showed tumours release cytokines to attract macrophages, which secrete growth factors that in turn promote tumour growth.
Wednesday, October 19, 2016
Fatty Liver Disease Linked to Type 2 Diabetes
Recent study identifies factors causing insulin to misbehave in non-alcoholic fatty liver disease.
Tuesday, October 18, 2016
New Model for Understanding Human Myeloma
Researchers develop mouse model where mice carry six human genes involved in human tumour growth.
Monday, October 17, 2016
Less is More in Ribosome Assembly
Research uncovers genetic "program" that allows for ribosome formation with a limited supply of magnesium.
Monday, October 17, 2016
Genes Behind Certain Aggressive Cancers Identified
Researchers have found the genes behind aggressive ovarian and endometrial cancers.
Tuesday, October 11, 2016
Cancer Drug Resistance Runs Deeper Than Single Gene
Study suggests abnormalities in gene networks offer better therapy response prediction than individual genes.
Monday, October 10, 2016
New Way to Suppress Lung Tumours
Researchers uncover new blocking mechanism that inhibits cancer growth without blockading critical process.
Wednesday, October 05, 2016
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
Wednesday, September 28, 2016
Studies Explore the Science of Cardiovascular Diseases
Two studies highlight how basic science research insights are key to future treatment breakthroughs.
Monday, September 26, 2016
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Thursday, September 22, 2016
Small Molecules Lead to a Big Change in Reaction Outcomes
Scientists have changed the behaviour of a group of molecules involved in carbon-oxygen bond synthesis.
Wednesday, September 21, 2016
Scientific News
How it Works: Advanced Data Analysis Using Visualization
Visualisation of data can be used to help molecular biologists tackle the vast datasets their experiments create.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
50-Year-Old Bacteria Could Be Alternative Treatment Option for Cancer
Researchers have developed a non-toxic strain of Salmonella to penetrate and target cancer cells.
Promising Blood Test Fails to Yield Clues About Best Strategies for Bladder Cancer Treatment
Penn Medicine research challenges previous findings on utility of neutrophil-to-lymphocyte ratio as a biomarker.
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
A Simple Tool for Clinical and Postmortem Toxicological Analysis
In this study, GC-MS is used for the determination of clozapine, and five antidepressants in human plasma, serum and whole blood.
Identification of Individual Red Blood Cells by Raman Microspectroscopy
In this study, Raman Microspectroscopy was used to identify individual red blood cells.
Influential Cancer Researcher Receives Agilent Thought Leader Award
Biologist Scott Lowe receives award in recognition for his contributions to cancer biology.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos