Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Novel Chip-based Platform Could Simplify Measurements of Single Molecules

Published: Wednesday, August 13, 2014
Last Updated: Monday, August 18, 2014
Bookmark and Share
A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform.

Researchers at UC Santa Cruz have developed a new approach for studying single molecules and nanoparticles by combining electrical and optical measurements on an integrated chip-based platform. In a paper published July 9 in Nano Letters, the researchers reported using the device to distinguish viruses from similarly-sized nanoparticles with 100 percent fidelity.

Combining electrical and optical measurements on a single chip provides more information than either technique alone, said corresponding author Holger Schmidt, the Kapany Professor of Optoelectronics in the Baskin School of Engineering and director of the W. M. Keck Center for Nanoscale Optofluidics at UC Santa Cruz. Graduate student Shuo Liu is first author of the paper.

The new chip builds on previous work by Schmidt's lab and his collaborators at Brigham Young University to develop optofluidic chip technology for optical analysis of single molecules as they pass through a tiny fluid-filled channel on the chip. The new device incorporates a nanopore that serves two functions: it acts as a "smart gate" to control the delivery of individual molecules or nanoparticles into the channel for optical analysis; and it allows electrical measurements as a particle passes through the nanopore.

"The nanopore delivers a single molecule into the fluidic channel, where it is then available for optical measurements. This is a useful research tool for doing single-molecule studies," Schmidt said.

Biological nanopores, a technology developed by coauthor David Deamer and others at UC Santa Cruz, can be used to analyze a DNA strand as it passes through a tiny pore embedded in a membrane. Researchers apply voltage across the membrane, which pulls the negatively charged DNA through the pore. Current fluctuations as the DNA moves through the pore provide electrical signals that can be decoded to determine the genetic sequence of the strand.

With the new device, researchers are able to gather electrical measurements on a nanoparticle as it moves through a pore in a solid membrane, and then measure the optical signals when the particle encounters a beam of light in the channel. By correlating the strength of the current decrease as a particle moves through the pore, the intensity of the optical signal, and the time of each measurement, the researchers are able to discriminate among particles with different sizes and optical properties and to determine the flow speed of particles through the channel.

The chip can also be used to differentiate particles of similar size but different composition. In one experiment, the researchers combined influenza viruses with nanobeads of a similar diameter and placed the mixture above the nanopore. The virus was labeled with a red fluorescent tag and the beads were labeled with a blue tag. The researchers correlated the electrical signal with the fluorescent wavelength and the time of each measurement. They found that the blue nanobeads traveled faster through the channel than red influenza virus, perhaps because of a difference in surface charge or mass. Besides identifying pathogens in a mixture, the researchers can also count the number of virus particles.

"This could be used as an analytical device to do reliable counts of virus particles in a sample," Schmidt said.

Currently, Schmidt's group is working on methods to add optical trapping to the device. This would allow a molecule in the channel to be held in one place, investigated, and released, with the potential to analyze hundreds of molecules in an hour. "Having this all on one chip would make single-molecule measurements much easier and more convenient," Schmidt said.

In addition to Liu and Schmidt, the coauthors include UCSC graduate student Joshua Parks, and Yue Zhao and Aaron Hawkins at Brigham Young University. This work was supported by the Keck Center for Nanoscale Optofluidics and grants from the National Science Foundation and National Institutes of Health.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

UC Santa Cruz Biomedical Research Facility Wins $2 Million NIH Grant
Grant awarded for a powerful new instrument used by chemists and biochemists.
Wednesday, May 06, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos