Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stanford Research Shows Value of Clams, Mussels in Cleaning Dirty Water

Published: Tuesday, August 19, 2014
Last Updated: Monday, August 18, 2014
Bookmark and Share
New Stanford research shows that bivalves can cleanse streams, rivers and lakes of potentially harmful chemicals that treatment plants can't fully remove.

Pharmaceuticals, personal care products, herbicides and flame retardants are increasingly showing up in waterways. New Stanford research finds that a natural, low-cost solution - clams and mussels - may already exist for these contaminants of emerging concern, or CECs.

These chemicals are found in some waters at trace levels; little is known about their ecosystem health impacts. But some have been implicated as potentially harmful to fish reproduction in waters receiving large inputs of wastewater.

In the right quantities, bivalves such as clams and mussels can remove some CECs from water in a matter of days, according to a Stanford study published in Environmental Science and Technology. The study's findings make a case for the conservation and restoration of freshwater bivalve habitat as a means of ensuring and amplifying the species' capacity to naturally purify water.

"We would be doing two things here - restoring ecosystems and cleaning water," said co-author Richard Luthy, the Silas H. Palmer Professor of Civil and Environmental Engineering and a senior fellow at the Stanford Woods Institute for the Environment.

Found in municipal wastewater, agricultural runoff and animal wastes, CECs don't break down easily when they reach streams and other waterways. Although much remains unknown about their impacts, CECs are not considered a threat to tap water or water reuse for irrigation.

In the Stanford study, researchers subjected native California floater mussels and invasive Asian clams to treated wastewater with various concentrations of CECs. Within 72 hours, the clams and mussels had removed up to 80 percent of some of the chemicals.

Luthy speculated that municipal water treatment facilities were unlikely to employ bivalves in their systems, due to the management and maintenance issues involved. However, Luthy said, mussels and clams could be put to work in wetlands and managed natural water systems to further treat plant effluent, agricultural runoff and other wastewater sources. This arrangement could have the added benefit of saving bivalves themselves. More than 70 percent of native U.S. freshwater mussels are at risk of extinction.

Just as engineered oyster beds and rafts in the Bronx River and Long Island Sound are bringing back the eastern oyster and helping control nutrients and excessive algae, freshwater clams and mussels could be managed to remove trace levels of CECs and improve water quality in streams dominated by effluent or urban runoff.

"Each native mussel filters about two liters of water a day, so it doesn't take a whole lot to improve water quality," Luthy said.

Luthy and the study's lead author, Niveen Ismail, a Stanford graduate student in civil and environmental engineering, plan to further study bivalves. They will look at the creatures' ability to absorb trace chemicals and pathogens, with an eye toward harnessing additional benefits from the re-introduction of native species in decline as well as invasive species that dominate some waterways. They will demonstrate bivalves' potential as water cleansers at San Francisco's Mountain Lake, a water body contaminated with harmful bacteria. By showing that mussels' filtering processes can remove harmful bacteria as well as CECs, the work will support efforts to improve water quality and restore native species.

"While there is still considerable research needed to determine the best method to deploy these bivalves on a large scale, at Mountain Lake we are considering using a raft carrying caged native bivalves which will allow us to monitor the health of the bivalves and also protect them from predators," Ismail said.

Co-authors of the study, "Uptake of Contaminants of Emerging Concern by the Bivalves Anodonta californiensis and Corbicula fluminea," are Claudia Müller, a former Stanford postdoctoral researcher in civil and environmental engineering; Rachel Morgan, a former Stanford undergraduate student in civil and environmental engineering; Ismail and Luthy.

This research was funded by the National Science Foundation, the Engineering Research Center for Re-inventing the Nation's Water Infrastructure, a Ford Foundation predoctoral fellowship, and an NSF graduate research fellowship.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$10M Grant Funds Infection-Focused Center
The new center will explore intracellular and intercellular processes by which salmonella bacteria, responsible for more than 100 million symptomatic infections annually, infect immune cells.
Wednesday, April 06, 2016
Resurrecting an Abandoned Drug
Previously discarded drug shows promise in helping human cells in a lab dish fight off two different viruses.
Wednesday, March 30, 2016
Fracking's Impact on Drinking Water Sources
A case study of a small Wyoming town reveals that practices common in the fracking industry may have widespread impacts on drinking water resources.
Wednesday, March 30, 2016
Imaging Cells and Tissues Under the Skin
First technique developed for viewing cells and tissues in three dimensions under the skin.
Tuesday, March 22, 2016
Glucose-Guzzling Immune Cells May Drive Coronary Artery Disease
Researchers at Stanford University have found excessive glucose uptake by inflammatory immune cells called macrophages, which reside in arterial plaques, may be behind coronary artery disease.
Wednesday, March 16, 2016
Ultra-Sensitive Test for Cancers, HIV
Test developed that is thousands of times more sensitive than current diagnostics.
Tuesday, March 15, 2016
Weighing up the Risk of Groundwater Contamination
Faulty, shallow wells can leak oil and natural gas into underground drinking-water supplies, Stanford Professor Rob Jackson finds.
Wednesday, February 24, 2016
Blood Test Could Transform TB Diagnosis
A simple blood test that can accurately diagnose active tuberculosis could make it easier and cheaper to control a disease that kills 1.5 million people every year.
Tuesday, February 23, 2016
Paper Published Based on RNA Game
Video-gamers have co-authored a paper describing a new set of rules for determining the difficulty of designing structures composed of RNA molecules.
Thursday, February 18, 2016
Marker Identifies Most Basic Form of Blood Stem Cell
Nearly 30 years after the discovery of the hematopoietic stem cell, Stanford researchers have found a marker that allows them to study the version of these stem cells that continues to replicate.
Wednesday, February 17, 2016
Flexible Gene Expression May Regulate Social Status
Scientists show how the selective expression of genes through epigenetics can regulate the social status of African cichlid fish.
Monday, January 11, 2016
World Forest Carbon Stocks Overestimated
Researchers with The Natural Capital Project show how fragmentation harms forests' ability to store carbon; more restoration is needed to reconnect forest patches.
Tuesday, January 05, 2016
U.S. Needs a New Approach for Governance of Risky Research
The United States needs better oversight of risky biological research to reduce the likelihood of a bioengineered super virus escaping from the lab or being deliberately unleashed, according three Stanford scholars.
Monday, January 04, 2016
Mapping the Mechanical Properties of Living Cells
Researchers have developed a new way to use atomic force microscopy to rapidly measure the mechanical properties of cells at the nanometer scale, an advance that could pave the way for better understanding immune disorders and cancer.
Monday, December 21, 2015
Viral Infections Leave a Signature on the Immune System
A test that queries the body’s own cells can distinguish a viral infection from a bacterial infection and could help doctors know when to use antibiotics.
Thursday, December 17, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Air Pollution Linked to Heart Disease
10-year project revealed air pollutants accelerate plaque build-up in arteries to the heart.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!