Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Grant for Texas Biomed to Perform Mass Spec-Based Studies into Heart Disease

Published: Wednesday, August 20, 2014
Last Updated: Wednesday, August 20, 2014
Bookmark and Share
Institute awarded $2.7M grant from the NIH to fund innovative approaches to genetics research for the development of new therapies for heart disease and other conditions.

The research builds on genetic studies conducted over the past decade by scientists around the world and at Texas Biomed that have helped identify large numbers of differences in the sequence of the human genome that are contributing to a wide range of diseases.  The challenge that remains is understanding how these changes in the DNA sequence specifically affect the cells in the body, and lead to obesity, diabetes, heart disease or even neurological disorders such as Parkinson’s disease. Once scientists understand the underlying mechanisms, they may be able to develop new therapies and actually improve treatment for these diseases.

To accelerate this process, the National Institute for General Medical Sciences (NIGMS) of the National Institutes of Health requested proposals from researchers to develop novel and innovative approaches that will help decipher the function of these specific genome sequence changes, and now awarded Michael Olivier, Ph.D., Texas Biomed’s newest recruit to the Department of Genetics, a new 4-year grant to develop and implement such technologies. His laboratory specifically focuses on developing new ways to study how proteins – little machines in cells that do everything, from producing energy to sending signals to other cells to recognizing and responding to challenges such as fat in the diet – interact with the DNA in our cells to regulate the expression of genes.

Genes can be turned on or off, depending on whether a cell needs more or less of a specific protein, and this complex regulation is influenced by a large number of other proteins that bind to the DNA and regulate it. These regulatory proteins bind to specific sequences in the DNA, and if this sequence is changed in an individual, that particular protein may no longer bind as efficiently. The result is that a nearby gene is regulated differently in a person with this specific change in the DNA sequence.

“Obviously, this complex regulation of genes requires a large number of different proteins, and many of them we do not even know yet,” Olivier said. “This is why we are trying to develop a method that allows us to look at one specific piece of DNA, such as one gene, and to identify all the proteins that are bound to that particular sequence.”

Once the sequence has been isolated, the bound proteins can be identified by mass spectrometry. In collaboration with Joanne Curran, Ph.D., Harald Göring, Ph.D., and John Blangero, Ph.D., in the Texas Biomed Department of Genetics, and Dr. Lloyd Smith, Professor of Chemistry and Director of the Wisconsin Genome Center at the University of Wisconsin, Madison, Dr. Olivier will exploit this new methodology to examine cells from members of the San Antonio Family Study. Here, they will identify proteins that regulate genes important in the regulation of cholesterol and other risk factors for heart disease.

Previous studies have helped identify changes in the DNA sequence of study participants that raise their cholesterol levels, which increases their risk for heart attacks or strokes. This new study will now identify how these sequence changes modify the regulation of specific genes, and which proteins are important in that regulation.

“Identifying the proteins that are important for this regulation of genes will not only help us understand how these sequence changes lead to higher cholesterol levels in these participants, it will also help us to identify new drugs that may help correct these changes, and help reduce the risk for a heart attack or stroke,” Olivier said.

For now, however, his lab is focusing on developing the necessary protocols and methods so that they can begin these investigations – a challenging effort requiring a wide range of expertise in his group, from chemistry to genetics to cell and molecular biology. And with the new support from the NIH, they hope to be able to develop and apply these new methodologies quickly so that they can be used to help understand how the human genome works, and how the sequence differences in it affect disease risk.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
Friday, September 30, 2016
Monkeys Protected by Zika DNA Vaccine
Experimental Zika virus DNA vaccines successfully protected monkeys against Zika infection.
Thursday, September 29, 2016
Probe Identifies Schizophrenia Genes That Stunt Brain Development
Scientists have isolated schizophrenia-related gene variants that change gene expression in the brain.
Thursday, September 29, 2016
Developing Novel Ear Infection Treatments
Research team engineers antibiotic gel for treating middle ear infections.
Wednesday, September 28, 2016
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Friday, September 23, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
NIH Study Finds Link Between Depression, Gestational Diabetes
Researchers at NIH have discovered that the depression in early pregnancy doubles risk for gestational diabetes, and gestational diabetes increases risk for postpartum depression.
Tuesday, September 20, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Finding Compounds That Inhibit Zika
Researchers identified compounds that inhibit the Zika virus and reduce its ability to kill brain cells.
Wednesday, September 14, 2016
Seeking Innovation to Combat Antimicrobial Resistance
Federal prize competition, with $20 million in prizes, seeks to develop new laboratory diagnostic tools to detect and distinguish antibiotic resistant bacteria.
Friday, September 09, 2016
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Wednesday, September 07, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
Extreme Temperatures Could Increase Preterm Birth Risk
Researchers at NIH have found more preterm births among women exposed to extremes of hot and cold.
Friday, September 02, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Charles River Acquires Agilux
Enhances Charles River’s early-stage capabilities in bioanalytical services.
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!