Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Grant for Texas Biomed to Perform Mass Spec-Based Studies into Heart Disease

Published: Wednesday, August 20, 2014
Last Updated: Wednesday, August 20, 2014
Bookmark and Share
Institute awarded $2.7M grant from the NIH to fund innovative approaches to genetics research for the development of new therapies for heart disease and other conditions.

The research builds on genetic studies conducted over the past decade by scientists around the world and at Texas Biomed that have helped identify large numbers of differences in the sequence of the human genome that are contributing to a wide range of diseases.  The challenge that remains is understanding how these changes in the DNA sequence specifically affect the cells in the body, and lead to obesity, diabetes, heart disease or even neurological disorders such as Parkinson’s disease. Once scientists understand the underlying mechanisms, they may be able to develop new therapies and actually improve treatment for these diseases.

To accelerate this process, the National Institute for General Medical Sciences (NIGMS) of the National Institutes of Health requested proposals from researchers to develop novel and innovative approaches that will help decipher the function of these specific genome sequence changes, and now awarded Michael Olivier, Ph.D., Texas Biomed’s newest recruit to the Department of Genetics, a new 4-year grant to develop and implement such technologies. His laboratory specifically focuses on developing new ways to study how proteins – little machines in cells that do everything, from producing energy to sending signals to other cells to recognizing and responding to challenges such as fat in the diet – interact with the DNA in our cells to regulate the expression of genes.

Genes can be turned on or off, depending on whether a cell needs more or less of a specific protein, and this complex regulation is influenced by a large number of other proteins that bind to the DNA and regulate it. These regulatory proteins bind to specific sequences in the DNA, and if this sequence is changed in an individual, that particular protein may no longer bind as efficiently. The result is that a nearby gene is regulated differently in a person with this specific change in the DNA sequence.

“Obviously, this complex regulation of genes requires a large number of different proteins, and many of them we do not even know yet,” Olivier said. “This is why we are trying to develop a method that allows us to look at one specific piece of DNA, such as one gene, and to identify all the proteins that are bound to that particular sequence.”

Once the sequence has been isolated, the bound proteins can be identified by mass spectrometry. In collaboration with Joanne Curran, Ph.D., Harald Göring, Ph.D., and John Blangero, Ph.D., in the Texas Biomed Department of Genetics, and Dr. Lloyd Smith, Professor of Chemistry and Director of the Wisconsin Genome Center at the University of Wisconsin, Madison, Dr. Olivier will exploit this new methodology to examine cells from members of the San Antonio Family Study. Here, they will identify proteins that regulate genes important in the regulation of cholesterol and other risk factors for heart disease.

Previous studies have helped identify changes in the DNA sequence of study participants that raise their cholesterol levels, which increases their risk for heart attacks or strokes. This new study will now identify how these sequence changes modify the regulation of specific genes, and which proteins are important in that regulation.

“Identifying the proteins that are important for this regulation of genes will not only help us understand how these sequence changes lead to higher cholesterol levels in these participants, it will also help us to identify new drugs that may help correct these changes, and help reduce the risk for a heart attack or stroke,” Olivier said.

For now, however, his lab is focusing on developing the necessary protocols and methods so that they can begin these investigations – a challenging effort requiring a wide range of expertise in his group, from chemistry to genetics to cell and molecular biology. And with the new support from the NIH, they hope to be able to develop and apply these new methodologies quickly so that they can be used to help understand how the human genome works, and how the sequence differences in it affect disease risk.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Implementation Science Approaches to Reduce Mother-to-Child HIV Transmission
The NIH study will investigate best practices to ease major disease burden in Sub-Saharan Africa.
Friday, July 01, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Tuesday, June 28, 2016
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Tuesday, June 28, 2016
Rates of Nonmedical Prescription Opioid Use Disorder Double in 10 Years
Researchers at NIH have found that the nonmedical use of prescription opioids has more than doubled among adults in the United States from 2001-2002 to 2012-2013.
Thursday, June 23, 2016
Peanut Allergy Prevention Strategy is Nutritionally Safe
Early-life peanut consumption does not affect duration of breastfeeding or children’s growth and nutrition.
Wednesday, June 22, 2016
NIH Launches Large Study of Pregnant Women in Areas Affected by Zika virus
Researchers at NIH and Fiocruz have begun a study to evaluate the magnitude of health risks that Zika virus infection poses to pregnant women and their developing fetuses and infants.
Wednesday, June 22, 2016
New Imaging Method May Predict Risk of Post-Treatment Brain Bleeding After Stroke
Researchers at NIH have developed technique that provides new insight into stroke.
Tuesday, June 21, 2016
Study Reveals Central Role of Endocannabinoids in Habit Formation
The new study findings point to a previously unknown mechanism in the brain that regulates the transition between goal-directed and habitual behaviors.
Tuesday, June 21, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Prevention May be Essential to Reducing Racial Disparities in Stroke
Researchers at NIH have found study provides clues to differences in stroke deaths between blacks and whites.
Friday, June 03, 2016
NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Thursday, May 26, 2016
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Implementation Science Approaches to Reduce Mother-to-Child HIV Transmission
The NIH study will investigate best practices to ease major disease burden in Sub-Saharan Africa.
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
New CAR T Cell Therapy Using Double Target Aimed at Solid Tumors
Researchers at Penn University have described how antibody, carbohydrate combination could apply to range of cancer types.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
Link Between Canned Food, BPA Exposure Revealed
New Stanford research resolves the debate on the link between canned food and exposure to the hormone-disrupting chemical known as Bisphenol A, or BPA.
Portable Test Rapidly Detects Zika
To better diagnose and track the disease, scientists are now reporting a new $2 test that in the lab can accurately detect low levels of the virus in saliva.
Erasing Unpleasant Memories with a Genetic Switch
Researchers from KU Leuven and the Leibniz Institute for Neurobiology have managed to erase unpleasant memories in mice using a 'genetic switch'.
Unidentified Spectra Detector
New algorithm clusters over 250 million spectra for analysis, such that millions of unidentified peptide sequences can be recognised.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!