Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Grant for Texas Biomed to Perform Mass Spec-Based Studies into Heart Disease

Published: Wednesday, August 20, 2014
Last Updated: Wednesday, August 20, 2014
Bookmark and Share
Institute awarded $2.7M grant from the NIH to fund innovative approaches to genetics research for the development of new therapies for heart disease and other conditions.

The research builds on genetic studies conducted over the past decade by scientists around the world and at Texas Biomed that have helped identify large numbers of differences in the sequence of the human genome that are contributing to a wide range of diseases.  The challenge that remains is understanding how these changes in the DNA sequence specifically affect the cells in the body, and lead to obesity, diabetes, heart disease or even neurological disorders such as Parkinson’s disease. Once scientists understand the underlying mechanisms, they may be able to develop new therapies and actually improve treatment for these diseases.

To accelerate this process, the National Institute for General Medical Sciences (NIGMS) of the National Institutes of Health requested proposals from researchers to develop novel and innovative approaches that will help decipher the function of these specific genome sequence changes, and now awarded Michael Olivier, Ph.D., Texas Biomed’s newest recruit to the Department of Genetics, a new 4-year grant to develop and implement such technologies. His laboratory specifically focuses on developing new ways to study how proteins – little machines in cells that do everything, from producing energy to sending signals to other cells to recognizing and responding to challenges such as fat in the diet – interact with the DNA in our cells to regulate the expression of genes.

Genes can be turned on or off, depending on whether a cell needs more or less of a specific protein, and this complex regulation is influenced by a large number of other proteins that bind to the DNA and regulate it. These regulatory proteins bind to specific sequences in the DNA, and if this sequence is changed in an individual, that particular protein may no longer bind as efficiently. The result is that a nearby gene is regulated differently in a person with this specific change in the DNA sequence.

“Obviously, this complex regulation of genes requires a large number of different proteins, and many of them we do not even know yet,” Olivier said. “This is why we are trying to develop a method that allows us to look at one specific piece of DNA, such as one gene, and to identify all the proteins that are bound to that particular sequence.”

Once the sequence has been isolated, the bound proteins can be identified by mass spectrometry. In collaboration with Joanne Curran, Ph.D., Harald Göring, Ph.D., and John Blangero, Ph.D., in the Texas Biomed Department of Genetics, and Dr. Lloyd Smith, Professor of Chemistry and Director of the Wisconsin Genome Center at the University of Wisconsin, Madison, Dr. Olivier will exploit this new methodology to examine cells from members of the San Antonio Family Study. Here, they will identify proteins that regulate genes important in the regulation of cholesterol and other risk factors for heart disease.

Previous studies have helped identify changes in the DNA sequence of study participants that raise their cholesterol levels, which increases their risk for heart attacks or strokes. This new study will now identify how these sequence changes modify the regulation of specific genes, and which proteins are important in that regulation.

“Identifying the proteins that are important for this regulation of genes will not only help us understand how these sequence changes lead to higher cholesterol levels in these participants, it will also help us to identify new drugs that may help correct these changes, and help reduce the risk for a heart attack or stroke,” Olivier said.

For now, however, his lab is focusing on developing the necessary protocols and methods so that they can begin these investigations – a challenging effort requiring a wide range of expertise in his group, from chemistry to genetics to cell and molecular biology. And with the new support from the NIH, they hope to be able to develop and apply these new methodologies quickly so that they can be used to help understand how the human genome works, and how the sequence differences in it affect disease risk.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,400+ scientific posters on ePosters
  • More Than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
Diagnosing Bacterial Infections in Blood Samples
Researchers have diagnosed a bacterial infection from a blood sample in infants.
Wednesday, August 24, 2016
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Tuesday, August 23, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Agent Blocks Pain Without Morphine's Side Effects
Scientists have synthesised a molecule with specific pain-relief properties and has shown its efficacy in mice.
Friday, August 19, 2016
Exploring Ebola-Malaria Link
Data shows people infected with Ebola were more likely to survive if co-infected with malarial parasite.
Thursday, August 18, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
Oral Immunotherapy Is Safe, Effective Treatment for Peanut-Allergic Preschoolers
Study demonstrates the potential of peanut OIT to suppress allergic immune responses to peanut.
Friday, August 12, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Stem Cells Grown On Scaffold Mimic Hip Joint Cartilage
Adult fat-derived stem cells grown on a 3-D scaffold that mimicked a hip joint surface formed cartilage and maintained the correct shape.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Using Animal Embryos Containing Human Cells
With recent advances in stem cell and gene editing technologies, an increasing number of researchers are interested in growing human tissues and organs in animals by introducing pluripotent human cells into early animal embryos.
Monday, August 08, 2016
Zika Vaccine Testing in Humans
The NAAID has initiated a clinical trail of a vaccine candidate for the prevention of the Zika virus infection.
Thursday, August 04, 2016
Scientific News
Adoption of Three Dimensional Culture Models May Save Lives
Physiologically relevant cell models can detect chronic hepatotoxicity early in the drug discovery process.
Shedding Light on HIV Vaccine Design
Broadly speaking - Mathematical modelling of host-pathogen coevolution sheds light on HIV vaccine design.
AACC 2016 Sees Clinical Chemistry Labs Drive Precision Medicine Offerings
Biomarker assays to enable precision medicine and risk assessment, mass spec-based tests designed for use in clinical labs large and small, and liquid biopsy technology captured the spotlight at the AACC annual meeting.
Diverse Fungi Secrete Similar Suite of Decomposition Enzymes
A recent study reveals different fungal species secrete a rich set of enzymes that share similar functions, despite species-specific differences in the amino acid sequences of these enzymes.
Lower Mortality with Polyunsaturated Fat
In a study from Uppsala University the fatty acid linoleic acid (Omega 6) in subcutaneous adipose tissue was linked to lower mortality among older men followed over a 15-year period.
'Missing Evolutionary Link' of a Widely Used Natural Drug Source Found
A well-known family of natural compounds, called “terpenoids,” have a curious evolutionary origin. In particular, one question relevant to future drug discovery has puzzled scientists: exactly how does Nature make these molecules?
‘Lead Actors’ in Immune Cell Development
A new study, led by scientists at The Scripps Research Institute (TSRI), reveals a surprising twist in immune biology.
Probing How CRISPR-Cas9 Works
New study in Journal of Cell Biology examines DNA targeting dynamics in live cells.
Microbiome Impacts Tissue Repair, Regeneration
Researchers at the Stowers Institute have established a definitive link between the makeup of the microbiome, the host immune response, and an organism’s ability to heal itself.
Diagnosing Tumors of Unknown Origin
EPICUP® test is a tool that helps to identify up to 87% of cancers of unknown origin (COD).
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!