Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Obtain Key Insights into How the Internal Body Clock is Tuned

Published: Friday, August 22, 2014
Last Updated: Friday, August 22, 2014
Bookmark and Share
New way to regulate internal body clocks by long non-coding RNA.

Researchers at UT Southwestern Medical Center have found a new way that internal body clocks are regulated by a type of molecule known as long non-coding RNA.

The internal body clocks, called circadian clocks, regulate the daily “rhythms” of many bodily functions, from waking and sleeping to body temperature and hunger. They are largely “tuned” to a 24-hour cycle that is influenced by external cues such as light and temperature.

“Although we know that long non-coding RNAs are abundant in many organisms, what they do in the body, and how they do it, has not been clear so far,” said Dr. Yi Liu, Professor of Physiology. “Our work establishes a role for long non-coding RNAs in ‘tuning’ the circadian clock, but also shows how they control gene expression.”

Determining how circadian clocks work is crucial to understanding several human diseases, including sleep disorders and depression in which the clock malfunctions. The influence of a functional clock is evident in the reduced performance of shift workers and the jet lag felt by long-distance travellers.

Dr. Liu and his team were able to learn more about the circadian rhythms by studying model systems involving the bread mold, Neurospora crassa. The researchers found that the expression of a clock gene named frequency (frq) is controlled by a long non-coding RNA named qrf (frq backwards) - an RNA molecule that is complementary, or antisense, to frq. Unlike normal RNA molecules, qrf does not encode a protein, but it can control whether and how much frq protein is produced.

Specifically, qrf RNA is produced in response to light, and can then interfere with the production of the frq protein. In this way, qrf can “re-set” the circadian clock in a light-dependent way. This regulation works both ways: frq can also block the production of qrf. This mutual inhibition ensures that the frq and qrf RNA molecules are present in opposite “phases” of the clock and allows each RNA to oscillate robustly. Without qrf, normal circadian rhythms are not sustained, indicating that the long non-coding RNA is required for clock functions.

The findings are published online in the journal Nature.

“We anticipate a similar mode of action may operate in other organisms because similar RNAs have been found for clock genes in mice. In addition, such RNAs may also function in other biological processes because of their wide presence in genomes,” said Dr. Liu, who is the Louise W. Kahn Scholar in Biomedical Research.

UT Southwestern investigators are leaders in unraveling the gene networks underlying circadian clocks and have shown that most body organs, such as the pancreas and liver, have their own internal clocks, and that virtually every cell in the human body contains a clock. It now appears that the clocks and clock-related genes - some 20 such genes have been identified - affect virtually all of the cells’ metabolic pathways, from blood sugar regulation to cholesterol production.

“This study adds to an important body of work that has shown the ubiquity of a circadian clock across species, including humans, and its role in metabolic regulation in cells, organs, and organisms,” said Dr. Michael Sesma, Program Director in the Division of Genetics and Developmental Biology at the of the National Institutes of Health's National Institute of General Medical Sciences, which partially funded the research. “These new results from Dr. Liu and his colleagues also extend beyond understanding the function of an anti-sense RNA in the fine tuning of a cell’s daily rhythm; they provide an example of the means by which anti-sense transcription likely regulates other key molecular and physiological processes in cells and organisms.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Enzyme Link Between Excessive Heart Muscle Growth, Cancer Growth
Researchers at UTSW have found that the drugs currently used to inhibit these enzymes in cancer may also be effective in treating enlargement of the heart muscle.
Saturday, April 16, 2016
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Friday, April 08, 2016
A Metabolic Twist that Drives Cancer Survival
A novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells has been identified.
Friday, April 08, 2016
Novel Metabolic Twist that Drives Cancer Survival
Researchers at CRI at UT Southwestern have identified a novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells.
Thursday, April 07, 2016
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
Thursday, March 31, 2016
Mutation That Causes Rare Disease
A mutation has been discovered that causes a rare systemic disorder known as XLPDR and confirmed a role for nucleic acids in immune function.
Tuesday, March 29, 2016
Promoting Liver Tissue Regeneration
Researchers at CRI have reported that inactivating a certain protein-coding gene promotes liver tissue regeneration in mammals.
Saturday, March 26, 2016
Lupus Study Shows Precision Medicine’s Potential to Define the Genetics of Autoimmune Disease
Researchers at UT Southwestern have used next-generation DNA sequencing technology to identify more than 1,000 gene variants that affect susceptibility to SLE.
Saturday, March 19, 2016
Researchers Find New Cytoplasmic Role
Researchers at UT Southwestern Medical Center have found new cytoplasmic role for proteins linked to neurological diseases, cancers.
Friday, March 18, 2016
Researchers’ Work Shines LIGHT on how to Improve Cancer Immunotherapy
Researchers at UT Southwestern Medical Center have reported a strategy to make a major advancement in cancer treatment.
Thursday, March 17, 2016
UTSW Researchers Build Powerful 3-D Microscope, Create Images Of Cancer Cells
Researchers at UTSW have designed a microscope capable of creating high-resolution, 3-D images of living cancer cells in realistic and controlled microenvironments.
Friday, February 26, 2016
Pcsk9-Inhibitor Drug Class That Grew out of UTSW Research Becomes a Game-Changer for Patient
Researchers at UTSW have developed a new pcsk9-inhibitor drug class that effective in reduced the high cholesterol level.
Friday, February 26, 2016
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Tuesday, February 09, 2016
Drug that Activates Innate Immune System Identified
Researchers from the institute have identified a drug, which is straightforward to synthesize and to couple to antigens that induce an immune response and may prove useful in the generation of vaccines.
Tuesday, February 09, 2016
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Thursday, January 28, 2016
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!