Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gut Bacteria that Protect Against Food Allergies Identified

Published: Wednesday, August 27, 2014
Last Updated: Wednesday, August 27, 2014
Bookmark and Share
Common gut bacteria prevent sensitization to allergens in a mouse model for peanut allergy, paving the way for probiotic therapies to treat food allergies.

The presence of Clostridia, a common class of gut bacteria, protects against food allergies, a new study in mice finds. By inducing immune responses that prevent food allergens from entering the bloodstream, Clostridia minimize allergen exposure and prevent sensitization -- a key step in the development of food allergies. The discovery points toward probiotic therapies for this so-far untreatable condition, report scientists from the University of Chicago, Aug 25 in the Proceedings of the National Academy of Sciences.

Although the causes of food allergy -- a sometimes deadly immune response to certain foods -- are unknown, studies have hinted that modern hygienic or dietary practices may play a role by disturbing the body's natural bacterial composition. In recent years, food allergy rates among children have risen sharply – increasing approximately 50 percent between 1997 and 2011 -- and studies have shown a correlation to antibiotic and antimicrobial use.

"Environmental stimuli such as antibiotic overuse, high fat diets, caesarean birth, removal of common pathogens and even formula feeding have affected the microbiota with which we've co-evolved," said study senior author Cathryn Nagler, PhD, Bunning Food Allergy Professor at the University of Chicago. "Our results suggest this could contribute to the increasing susceptibility to food allergies."

To test how gut bacteria affect food allergies, Nagler and her team investigated the response to food allergens in mice. They exposed germ-free mice (born and raised in sterile conditions to have no resident microorganisms) and mice treated with antibiotics as newborns (which significantly reduces gut bacteria) to peanut allergens. Both groups of mice displayed a strong immunological response, producing significantly higher levels of antibodies against peanut allergens than mice with normal gut bacteria.

This sensitization to food allergens could be reversed, however, by reintroducing a mix of Clostridia bacteria back into the mice. Reintroduction of another major group of intestinal bacteria, Bacteroides, failed to alleviate sensitization, indicating that Clostridia have a unique, protective role against food allergens.

Closing the door

To identify this protective mechanism, Nagler and her team studied cellular and molecular immune responses to bacteria in the gut. Genetic analysis revealed that Clostridia caused innate immune cells to produce high levels of interleukin-22 (IL-22), a signaling molecule known to decrease the permeability of the intestinal lining.

Antibiotic-treated mice were either given IL-22 or were colonized with Clostridia. When exposed to peanut allergens, mice in both conditions showed reduced allergen levels in their blood, compared to controls. Allergen levels significantly increased, however, after the mice were given antibodies that neutralized IL-22, indicating that Clostridia-induced IL-22 prevents allergens from entering the bloodstream.

"We've identified a bacterial population that protects against food allergen sensitization," Nagler said. "The first step in getting sensitized to a food allergen is for it to get into your blood and be presented to your immune system. The presence of these bacteria regulates that process." She cautions, however, that these findings likely apply at a population level, and that the cause-and-effect relationship in individuals requires further study.

While complex and largely undetermined factors such as genetics greatly affect whether individuals develop food allergies and how they manifest, the identification of a bacteria-induced barrier-protective response represents a new paradigm for preventing sensitization to food. Clostridia bacteria are common in humans and represent a clear target for potential therapeutics that prevent or treat food allergies. Nagler and her team are working to develop and test compositions that could be used for probiotic therapy and have filed a provisional patent.

"It's exciting because we know what the bacteria are; we have a way to intervene," Nagler said. "There are of course no guarantees, but this is absolutely testable as a therapeutic against a disease for which there's nothing. As a mom, I can imagine how frightening it must be to worry every time your child takes a bite of food."

"Food allergies affect 15 million Americans, including one in 13 children, who live with this potentially life-threatening disease that currently has no cure," said Mary Jane Marchisotto, senior vice president of research at Food Allergy Research & Education. "We have been pleased to support the research that has been conducted by Dr. Nagler and her colleagues at the University of Chicago."

The study, "Commensal bacteria protect against food allergen sensitization," was supported by Food Allergy Research & Education (FARE) and the University of Chicago Digestive Diseases Research Core Center. Gene sequencing was conducted at the Next-Generation Sequencing Core at Argonne National Laboratory. Additional authors include Andrew T. Stefka, Taylor Feehley, Prabhanshu Tripathi, Ju Qiu, Kathy D. McCoy, Sarkis K. Mazmanian, Melissa Y. Tjota, Goo-Young Seo, Severine Cao, Betty R. Theriault, Dionysios A. Antonopoulos, Liang Zhou, Eugene B. Chang and Yang-Xin Fu.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bacterial Circadian Clocks Set by Metabolism, Not Light
New study finds that metabolism is the primary driver of the circadian rhythm.
Monday, December 14, 2015
New Nanomanufacturing Technique Advances Imaging, Biosensing Technology
Researchers invent a novel way to build nanolenses in large arrays using a combination of chemical and lithographic techniques.
Thursday, December 10, 2015
Enormous Genetic Variation May Shield Tumors from Treatment
Debate over Darwinian selection vs. random mutations emerges at the tumor level.
Wednesday, November 11, 2015
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Monday, November 09, 2015
Protein Aggregation After Heat Shock Is An Organized, Reversible Response
New study finds protein aggregation after heat exposure is a reversible cellular process, not unrecoverable damage from misfolding.
Friday, September 11, 2015
New Form of DNA Modification May Carry Inheritable Information
Scientists have described the surprising discovery and function of a new DNA modification in insects, worms and algae.
Friday, May 08, 2015
Shape-Shifting Molecule Tricks Viruses Into Mutating Themselves To Death
Study uses two-dimensional infrared spectroscopy to help distinguish between normal and shape-shifted structures.
Thursday, April 16, 2015
Drug-Development Grants Focus On Sleep Apnea, Asthma Research
NIH grants awarded to two University of Chicago research teams will help to develop novel treatments for sleep apnea and asthma.
Tuesday, January 27, 2015
Researchers Identify ‘Fat Gene’ Associated with Obesity
Mutations within the gene FTO have been implicated as the strongest genetic determinant of obesity risk in humans, but the mechanism behind this link remained unknown.
Monday, March 17, 2014
Autism and Intellectual Disability Incidence Linked with Environmental Factors
Although autism and intellectual disability have genetic components, environmental causes are thought to play a role.
Monday, March 17, 2014
Staphylococcus Aureus Bacteria Turns Immune System Against Itself
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, including the antibiotic-resistant strain MRSA.
Friday, December 13, 2013
Staphylococcus aureus Bacteria Turns Immune System Against Itself
Scientists use primary human immune defense mechanism to destroy white blood cells.
Thursday, December 05, 2013
Genetic Analysis Reveals Insights into Genetics of OCD, Tourette’s
Major differences between the genetic makeup of obsessive-compulsive disorder and Tourette’s syndrome, providing the first direct confirmation that both are highly heritable.
Tuesday, November 05, 2013
Computer Modeling Shows Crucial Function of Water Molecules in Proteins
Scientists used molecular simulations that modeled a potassium channel and its immediate cellular environment, atom for atom.
Wednesday, July 31, 2013
Israel-Chicago Partnership Targets Water Resource Innovations
Partnership is to create new materials and processes for making clean, fresh drinking water more plentiful and less expensive by 2020.
Monday, June 24, 2013
Scientific News
Breaking Cell Barriers with Retractable Protein Nanoneedles
Adapting a bacterial structure, institute researchers have developed protein actuators that can mechanically puncture cells.
Gene Signature could Lead to a New Way of Diagnosing Lyme Disease
Lyme disease patients had distinctive gene signatures that persisted for at least three weeks, even after they had taken the antibiotics.
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!