Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Single Animal to Human Transmission Event Responsible for 2014 Ebola Outbreak

Published: Saturday, August 30, 2014
Last Updated: Saturday, August 30, 2014
Bookmark and Share
NIH-funded scientist uses latest genomic technology to make discovery.

Scientists used advanced genomic sequencing technology to identify a single point of infection from an animal reservoir to a human in the current Ebola outbreak in West Africa. This research has also revealed the dynamics of how the Ebola virus has been transmitted from human to human, and traces how the genetic code of the virus is changing over time to adapt to human hosts. Pardis Sabeti, M.D., Ph.D, a 2009 National Institutes of Health Director’s New Innovator awardee and her team carried out the research.

“Dr. Sabeti’s research shows the power of using genomic analysis to track emerging viral outbreaks,” said NIH Director Francis S. Collins, M.D., Ph.D. “This ability produces valuable information that can help inform public health decisions and actions.”

The 2014 Ebola outbreak is now the largest outbreak in history, with current estimates of 2,473 infections and 1350 deaths since it began in late December 2013 according to the World Health Organization. This outbreak is also the first in West Africa and the first to affect urban areas. There are no approved drugs for Ebola virus disease, though prompt diagnosis and aggressive supportive care can improve survival. The disease is characterized by high fever, headache, body aches, intense weakness, stomach pain, and lack of appetite. This is followed by vomiting, diarrhea, rash, impaired kidney and liver function and in some cases, internal and external bleeding.

To better understand why this outbreak is larger than previous outbreaks, Dr. Sabeti, senior associate member of the Broad Institute, Cambridge, Massachusetts, led an extensive analysis of the genetic makeup of Ebola samples from patients living in affected regions. Joined by an international team of scientists, Dr. Sabeti used advanced technology to analyze the genetics of the Ebola samples extremely rapidly and with high levels of accuracy. Using this technology, the researchers pinpointed a single late 2013 introduction from an unspecified animal reservoir into humans. Their study showed that the strain responsible for the West African outbreak separated from a closely related strain found in Central Africa as early as 2004, indicating movement from Central to West Africa over the span of a decade. Studying RNA changes occurring over the span of the outbreak suggests that the first human infection of the outbreak was followed by exclusive human to human transmissions.

While analyzing the genetic makeup of the Ebola samples, Dr. Sabeti and colleagues discovered a number of mutations that arose as the outbreak spread. Some of these mutations, termed nonsynonymous mutations, alter the biological state of the virus and may allow it to continually and rapidly adapt to human immune defenses as the outbreak continues. This feature points to the need for improved methods that will allow for close monitoring of changes in the viral genome and the impact on vaccine targets. Such monitoring, called genomic surveillance, can provide important insights into the biology of how the Ebola virus spreads and evolves. It may also allow scientists to develop improved methods to detect infection, and point the way to new and improved drug and vaccines.

Dr. Sabeti’s New Innovator Award is designed to support exceptionally creative new investigators conducting innovative and high-impact research, as part of the NIH Common Fund’s High-Risk, High-Reward program. The original focus of her research was on Lassa fever, a related but distinct hemorrhagic disease. When the Ebola outbreak began, she shifted her research focus to address this pressing challenge.

“Dr. Sabeti’s New Innovator Award provided flexibility to quickly adjust her research when the 2014 Ebola outbreak began,” said James M. Anderson M.D., Ph.D. director of the Division of Program Coordination, Planning and Strategic Initiatives at NIH. “This exemplifies how the High-Risk, High- Reward program allows researchers to tackle the most challenging and urgent scientific questions.”

The NIH Common Fund supports a series of exceptionally high impact research programs that are broadly relevant to health and disease. Common Fund programs are designed to overcome major research barriers and pursue emerging opportunities for the benefit of the biomedical research community at large. The research products of the Common Fund programs are expected to catalyze disease-specific research supported by the NIH Institutes and Centers.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study to Assess Shorter-Duration Antibiotics in Children
Physicians plan a clinical trial to evaluate whether short course anti-biotics are effective at treating CAP in children.
Wednesday, November 30, 2016
First New HIV Vaccine Study for Seven Years Begins
South Africa hosts historic clinical trial of experimental HIV vaccine aiming to safely prevent HIV infection.
Wednesday, November 30, 2016
Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Wednesday, November 23, 2016
Food Additives Promote Inflammation, Colon Cancer
Dietary emulsifiers promoted colon cancer in a mouse model by altering gut microbes and increasing gut inflammation.
Wednesday, November 23, 2016
Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Wednesday, November 23, 2016
More Immunotherapy Options Approved for Lung Cancer
The FDA has approved a new immunotherapy drug for certain patients with non-small cell lung cancer.
Monday, November 21, 2016
Big Data for Infectious Disease Surveillance
NIH-led effort examines use of big data from health records and other digital sources for uses in infectious disease surveillance.
Tuesday, November 15, 2016
Potential Therapies Against Drug-Resistant Bacteria Identified
Researchers create new identification method for drug and drug combinations that may combat resistant infections.
Thursday, November 10, 2016
Testing Zika Vaccine in Humans Begins
The first of five planned clinical trials to test ZPIV vaccine in humans has begun.
Tuesday, November 08, 2016
Genetic Markers Predict Malaria Treatment Failure
By comparing 297 parasite genomes to a reference malaria parasite genome, researchers have identified two genetic markers that are strongly associated with the parasites’ ability to resist piperaquine.
Monday, November 07, 2016
Cannabinoid Receptor Structure Revealed
Scientists provided a detailed view of the primary molecule through which cannabinoids exert their effects on the brain. The findings might help guide the design of more targeted medicines with fewer side effects.
Wednesday, November 02, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Ebola-Affected Countries Receive NIH Support
The National Institutes of Health has established a new program to further research capacity to study Ebola and other epidemics.
Thursday, October 27, 2016
Skin Patch to Treat Peanut Allergy
NIH-funded study suggests peanut protein patch is a safe and convenient method of treatment.
Thursday, October 27, 2016
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
Wednesday, October 26, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!