We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Comparison of Caffeinated and Decaffeinated Coffee - Implications for Alzheimer's Disease

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

Abstract
Findings from epidemiology, preclinical and clinical studies indicate that consumption of coffee could have beneficial effects against dementia and Alzheimer's disease (AD). The benefits appear to come from caffeinated coffee, but not decaffeinated coffee or pure caffeine itself. Therefore, the objective of this study was to use metabolomics approach to delineate the discriminant metabolites between caffeinated and decaffeinated coffee, which could have contributed to the observed therapeutic benefits. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics approach was employed to characterize the metabolic differences between caffeinated and decaffeinated coffee. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed distinct separation between the two types of coffee (cumulative Q2 = 0.998). A total of 69 discriminant metabolites were identified based on the OPLS-DA model, with 37 and 32 metabolites detected to be higher in caffeinated and decaffeinated coffee, respectively. These metabolites include several benzoate and cinnamate-derived phenolic compounds, organic acids, sugar, fatty acids, and amino acids. Our study successfully established GC-TOF-MS based metabolomics approach as a highly robust tool in discriminant analysis between caffeinated and decaffeinated coffee samples. Discriminant metabolites identified in this study are biologically relevant and provide valuable insights into therapeutic research of coffee against AD. Our data also hint at possible involvement of gut microbial metabolism to enhance therapeutic potential of coffee components, which represents an interesting area for future research.

The article, Gas Chromatography Time-Of-Flight Mass Spectrometry (GC-TOF-MS)-Based Metabolomics for Comparison of Caffeinated and Decaffeinated Coffee and Its Implications for Alzheimer's Disease, is published online in PLoS ONE and is free to access.